Skip to main content
Log in

Changes in the physicochemical characteristics of rabbit sclera upon scleral reinforcement

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Biochemical analysis and differential scanning calorimetry demonstrated that the connective tissue (capsule) formed around a reinforcing scleroplastic implant is similar to intact sclera, its main component being type I collagen organized in perfect fibrils with cross-linking sufficient for normal thermomechanical properties. DSC also revealed a fraction of collagen with heat-labile ‘immature’ cross-links around implants containing a stimulatory plant product Panaxel, which suggested high synthetic activity of fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Avetisov, Myopia (Meditsina, Moscow, 1999) [in Russian].

    Google Scholar 

  2. E. N. Iomdina, Doctoral Dissertation in Biology (Moscow, 2000).

  3. E. P. Tarutta, L. D. Andreeva, G. A. Markosyan, et al., Vestn. Oftal’mol. No. 5, 8 (1999).

  4. E. N. Iomdina, E. P. Tarutta, L. D. Andreeva, et al., Refrak. Khir. Oftal’mol. No. 4, 19 (2005).

  5. P. G. Watson and R. D. Young, Experimental Eye Research 78, 609 (2004).

    Article  Google Scholar 

  6. A. J. Bailey, Eye 1 (Pt 2), 175 (1987).

    Google Scholar 

  7. J. A. Rada, V. R. Achen, S. Penugonda, et al., Investigative Ophthalmology and Visual Science 41(7), 1639 (2000).

    Google Scholar 

  8. A. Miyagawa, M. Kobayashi, Yo. Fujita, et al., Cornea 20(6), 651 (2001).

    Article  Google Scholar 

  9. V. M. Stepanov, Molecular Biology (Vysshaya Shkola, Moscow, 1996) [in Russian].

    Google Scholar 

  10. A. J. Bailey, Mechanisms of Ageing and Development 122, 735 (2001).

    Article  Google Scholar 

  11. N. Blumenkrantz and G. Asboe-Hansen, Acta Derm. Venerol. 58(2), 111 (1978).

    Google Scholar 

  12. E. Spoerl and T. Seiler, J. Refract. Surg. 15(6), 711 (1999).

    Google Scholar 

  13. N.S. Malik, S. J. Moss, N. Ahmed, et al., Biochim. Biophys. Acta 1138(3), 222 (1992).

    Google Scholar 

  14. P. Kronick, B. Y. Maleeff, and R. Carroll, Connective Tissue Res. 18, 123 (1998).

    Google Scholar 

  15. M. I. Vinetskaya, Z. K. Boltaeva, E. N. Iomdina, and L. D. Andreeva, Oftal’mol. Zh. 3, 155 (1988).

    Google Scholar 

  16. C. Giudici, M. Viola, M. E. Tira, et al., FEBS Lett. 547, 170 (2003).

    Article  Google Scholar 

  17. D. Hickman, T. J. Sims, C. A. Miles, et al., J. Biotechnology 79, 245 (2000).

    Article  Google Scholar 

  18. D. G. Wallace, R. A. Condell, J. W. Donovan, et al., Biopolymers 25, 1875 (1986).

    Article  Google Scholar 

  19. A. J. Bailey, Biochim. Biophys. Acta 160(3), 447 (1968).

    Google Scholar 

  20. A. J. Bailey and D. Lister, Nature 220(164), 280 (1968).

    Article  ADS  Google Scholar 

  21. M. Le Lous, F. Flandin, D. Herbage, and J. C. Allain, Biochim. Biophys. Acta 717(2), 295 (1982).

    Google Scholar 

  22. F. Flandin, C. Buffevant, and D. Herbage, Biochim. Biophys. Acta 791(2), 205 (1984).

    Google Scholar 

  23. M. Melling, R. Reihsner, W. Pfeiler, et al., Anat. Rec. 255, 401 (1999).

    Article  Google Scholar 

  24. M. Melling, W. Pfeiler, D. Karimian-Teherani, et al., Anat. Rec. 259, 327 (2000).

    Article  Google Scholar 

  25. I. Yu. Ignat’eva, E. N. Sobol’, S. V. Averkiev, et al., Dokl. Ross. Akad. Nauk 395, 696 (2004).

    Google Scholar 

  26. V. Prathiba and M. Suryanarayanan, Ind. J. Biochem. Biophys. 36, 158 (1999).

    Google Scholar 

  27. G. I. Tsereteli, Biofizika 27, 700 (1982).

    Google Scholar 

  28. M. Luescher, M. Ruegg, and P. Shindler, Biopolymers 13, 2489 (1974).

    Article  Google Scholar 

  29. J. Kopp, M. Bonnet, and J. P. Renou, Matrix 9, 443 (1989).

    Google Scholar 

  30. W. Friess and G. Lee, Biomaterials 17, 2289 (1996).

    Article  Google Scholar 

  31. C. A. Miles and M. Ghelashvili, Biophys. J. 76, 3243 (1999).

    Article  Google Scholar 

  32. A. Rochdi, L. Foucat, and L. P. Renou, Biopolymers 50, 690 (1999).

    Article  Google Scholar 

  33. A. Tsugita and J.-J. Scheffler, Eur. J. Bioch. 124, 585 (1982).

    Article  Google Scholar 

  34. E. Gasteiger, A. Gattiker, C. Hoogland, et al., Nucl. Acids Res. 31, 3784 (2003).

    Article  Google Scholar 

  35. R. W. Farhdale and D. J. Buttle, Biochim. Biophys. Acta 883, 173 (1986).

    Google Scholar 

  36. N. Rotter, G. Tobias, M., et al. Lebl, Arch. Biochem. Biophys. 403, 132 (2002).

    Article  Google Scholar 

  37. D. A. Parry, Biophys. Chem. 29(1–2), 195 (1988).

    Article  Google Scholar 

  38. R. G. Paul, C. Averyn, D. A. Slatter, et al., Biochem. J. 330, 1241 (1998).

    Google Scholar 

  39. P. Bruckner and D. J. Prockop, Anal. Biochem. 110(2), 360 (1981).

    Article  Google Scholar 

  40. L. Mandelkern, Polymer Crystallization (Khimiya, Moscow, 1966) [in Russian].

    Google Scholar 

  41. I. Z. Nagy, V. N. Toth, and F. Verzar, Connect. Tissue Res. 2(4), 265 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.Yu. Ignat’eva, S.V. Averkiev, E.N. Iomdina, Zh.N. Ivashchenko, L.A. Baratova, E.V. Lukashina, V.V. Lunin, 2007, published in Biofizika, 2007, Vol. 52, No. 2, pp. 324–331.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignat’eva, N.Y., Averkiev, S.V., Iomdina, E.N. et al. Changes in the physicochemical characteristics of rabbit sclera upon scleral reinforcement. BIOPHYSICS 52, 227–232 (2007). https://doi.org/10.1134/S0006350907020145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907020145

Key words

Navigation