Skip to main content
Log in

Comparative analysis of methods for increasing the biostability of collagen films

  • Materials for Ensuring Human Vital Activity and Environmental Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Most often, glutaraldehyde (GA) is used to increase the biostability of biological materials intended for the manufacture of implantable products or matrices for tissue-engineered constructs. However, this method has a number of side effects, including the manifestation of cytotoxicity of the final product, necessitating the search for new technological solutions. The original scleral collagen (SC) films of farm animals were obtained by the method of irrigation (sample thickness of ~150 μm), followed by drying at 370°C to a constant weight in the air. For the first group of samples, dehydrothermal treatment of SC films was carried out at a residual pressure of 10–20 mmHg and 120°C. Samples of the second group were stabilized by UV cross-linking—processing the surface with a Philips CLEO Compact lamp (16 W, 254 nm, distance from lamp to sample of 3 cm). Treatment of the SC films of third group was conducted in GA vapor at room temperature for the selected time interval (from 30 min to 18 h). The fourth group consisted of SC samples stabilized by the traditional method of cross-linking of biological tissues: treatment of aqueous 25% solution of GA with the final concentration in collagen solution from 0.0005% to 1.0% (processing time was 24 h at room temperature). The biodegradation of the samples was assessed using accelerated tests in phosphate buffer (pH 7.4, 37°C, 1 h) containing collagenase at the rate of 1 unit of enzyme per 1 mg of dry sample; the reaction was terminated after 1 h by lowering the temperature to 4°C. The films of SC (mass loss 66 ± 9%) were used as the control during the search for an optimal method of cross-linking. UV irradiation treatment weakly affected the biodegradation of the SC samples (mass loss of 55 ± 5%). The dehydrothermal treatment resulted in a linear decrease in biodegradation with increasing time of incubation, and after 18 h of treatment, the mass loss of the SC samples was practically absent. It was found that the reduction of the GA concentration in the SC solution from 1.0 to 0.001% led to a significant reduction in mass loss of samples from 20 ± 3% to 5 ± 1%. Cross-linking of the samples of SC in GA vapor also led to an increase in biostability of SC films (mass loss absent after 18 h of treatment). From four methods of SC films treatment investigated, the optimal from the point of view of increasing the biostability of collagen- based materials are dehydrothermal treatment and cross-linking by glutaraldehyde vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevast’anov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: Med. Inf. Agentstvo, 2011.

    Google Scholar 

  2. Schumakov, V.I. and Sevast’anov, V.I., Biopolymeric matrices for artificial organs and tissues, Zdravookhr. Med. Tekh., 2003, no. 4, pp. 30–32.

    Google Scholar 

  3. Xu, B., Chow, M.-J., and Zhang, Y., Experimental and modeling study of collagen scaffolds with the effects of cross linking and fiber alignment, Int. J. Biomater., 2011, vol. 2011. doi 10.1155/2011/172389

    Google Scholar 

  4. Goissis, G., Suzigan, S., and Parreira, D.R., Preparation and characterization of collagen-elastin matrices from blood vessels intended as small diameter vascular grafts, Artif. Organs, 2000, vol. 24, pp. 217–223.

    Article  CAS  Google Scholar 

  5. Ehrmit, L. and Benua, O., RF Patent 2360928, 2009.

    Google Scholar 

  6. Park, S., Kim, S.H., Lim, H.G., Lim, C., and Kim, Y.J., The anti-calcification effect of dithiobispropionimidate, carbodiimide and ultraviolet irradiation crosslinking compared to glutaraldehyde in rabbit implantation models, Korean J. Thorac. Cardiovasc. Surg., 2013, vol. 46, no. 1, pp. 1–13.

    Article  Google Scholar 

  7. Chandran, P.L., Paik, D.C., and Holmes, J.W., Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde cross-linking, Connect. Tissue Res., 2012, vol. 53, no. 4, pp. 285–297, doi 10.3109/ 03008207.2011.640760

    Article  CAS  Google Scholar 

  8. David, T.Ch., Perelman, N., Ellen, C. K., and Nimni, M., Mechanism of cross linking of proteins by glutaraldehyde III. Reaction with collagen in tissues, Connect. Tissue Res., 1985, vol. 1–3, no. 2, pp. 109–115.

    Google Scholar 

  9. Tu, R., Wang, E., Hata, C., et al., A compliant biological vascular prosthesis, Int. J. Artif. Organs, 1993, vol. 16, pp. 141–145.

    CAS  Google Scholar 

  10. Umashankar, P.R., Arun, T., and Kumari, T.V., Short duration gluteraldehyde cross-linking of decellularized bovine pericardium improves biological response, J. Biomed. Mater. Res., Part A, 2011, vol. 97, no. 3, pp. 311–320.

    Article  CAS  Google Scholar 

  11. Grover, Ch.N., Gwynne, J.H., Pugh, N., Hamaia, S., Farndale, R.W., Best, S.M., and Ruth, E.C., Cross linking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films, Acta Biomater., 2012, vol. 8, no. 8, pp. 3080–3090.

    Article  CAS  Google Scholar 

  12. Wess, T.J. and Orgel, J.P., Changes in collagen structure: Drying, dehydrothermal treatment and relation to long-term deterioration, Thermochim. Acta, 2000, vol. 365, nos. 1–2, pp. 119–128.

    Article  CAS  Google Scholar 

  13. Subramanian, A. and Lin, H.-Y., Cross-linked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation, J. Biomed. Mater. Res., Part A, 2005, vol. 75, no. 3, pp. 742–753. doi 10.1002/jbm.a.30489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nemets.

Additional information

Original Russian Text © E.A. Nemets, A.P. Pankina, V.I. Sevastianov, 2017, published in Perspektivnye Materialy, 2017, No. 3, pp. 26–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemets, E.A., Pankina, A.P. & Sevastianov, V.I. Comparative analysis of methods for increasing the biostability of collagen films. Inorg. Mater. Appl. Res. 8, 718–722 (2017). https://doi.org/10.1134/S2075113317050203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317050203

Keywords

Navigation