Skip to main content
Log in

Prediction of the changes in thermodynamic stability of proteins caused by single amino acid substitutions

  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Prediction of the effect of amino acid substitutions on the thermodynamic stability of proteins is of great importance for studies into the molecular mechanisms underlying the abnormal function of mutant proteins, interpretation of genotyping results, and purposeful design of modified proteins with improved biomedical and biotechnological properties. A set of methods was developed for predicting the changes in free energy (ΔΔG) of mutant proteins containing single substitutions using the information only about protein primary structure or also about the spatial structure. A modified KRAB algorithm was used; its higher accuracy in predicting the changes in the thermodynamic stability of mutant proteins compared with the other known methods designed for solving this problem is demonstrated. Distribution of the positions in the sequence of Malayan pit viper venom protein (kistrin) where the substitutions decrease or increase kistrin stability is analyzed. The substitutions at most positions conserved in the disintegrin family decrease the stability of this protein, except for several positions whose conservation can be determined by functional significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Friedler, D. B. Veprintsev, L. O. Hansson, and A. R. Fersht, J. Biol. Chem. 278(26), 24108 (2003).

    Article  Google Scholar 

  2. I. N. Gorshkova, T. Liu, V. I. Zannis, and D. Atkinson, Biochemistry 41(33), 10529 (2002).

  3. M. Lehmann and M. Wyss, Curr. Opin. Biotechnol. 12(4), 371 (2001).

    Article  Google Scholar 

  4. L. X. Dang, K. M. Merz, and P. A. Kollman, J. Am. Chem. Soc. 111, 8505 (1989).

    Article  Google Scholar 

  5. M. Prevost, S. J. Wodak, B. Tidor, and M. Karplus, Proc. Natl. Acad. Sci. USA 88, 10880 (1991).

    Article  ADS  Google Scholar 

  6. J. W. Pitera and P. A. Kollman, Proteins 41, 385 (2000).

    Article  Google Scholar 

  7. D. Gilis and M. Rooman, J. Mol. Biol. 272, 276 (1997)

    Article  Google Scholar 

  8. C. M. Topham, N. Srinivasan, and T. L. Blundell, Prot. Eng. 101, 46 (1997).

    Google Scholar 

  9. D. Gilis and M. Rooman, Theor. Chem. Acc. 101, 46 (1999).

    Google Scholar 

  10. E. Capriotti, P. Fariselli, and R. Casadio, Bioinformatics 20(Suppl. 1), i63 (2004).

    Article  Google Scholar 

  11. E. Capriotti, P. Fariselli, R. Calabrese, and R. Casadio, Bioinformatics 21(Suppl. 2), ii54 (2005).

    Article  Google Scholar 

  12. K. A. Bava, M. M. Gromiha, H. Uedaira, et al., Nucleic Acids Res. 32, 120 (2004).

    Article  Google Scholar 

  13. A. Bairoch and R. Apweiler, Nucleic Acids Res. 24(1), 21 (1996).

    Article  Google Scholar 

  14. H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28(1), 235 (2000).

    Article  Google Scholar 

  15. M. M. Gromiha, J. An, H. Kono, et al., Nucleic Acids Res. 28(1), 283 (2000).

    Article  Google Scholar 

  16. R. Guerois, J. E. Nielsen, and L. Serrano, J. Mol. Biol. 320(2), 369 (2002).

    Article  Google Scholar 

  17. D. Frishman and P. Argos, Proteins 23(4), 566 (1995).

    Article  Google Scholar 

  18. N. G. Zagoruiko, Applied Methods for Analysis of Data and Knowledge (Institut Matematiki, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  19. R. K. Prim, in Cybernetics Transactions (Nauka, Moscow, 1961), no. 2, pp. 95–107.

    Google Scholar 

  20. E. Capriotti, P. Fariselli, and R. Casadio, Nucleic Acids Res. 33 (Web Server issue), W306 (2005).

    Article  Google Scholar 

  21. J. Cheng, A. Randall, and P. Baldi, Proteins 62(4), 1125 (2006).

    Article  Google Scholar 

  22. M. S. Dennis, P. Carter, and R. A. Lazarus, Proteins 15(3), 312 (1993).

    Article  Google Scholar 

  23. D. A. Afonnikov and N. A. Kolchanov, Nucleic Acids Res. 32, W64 (2004).

    Article  Google Scholar 

  24. D. A. Afonnikov, D. Yu. Oshchepkov, and N. A. Kolchanov, Bioinformatics 17, 1035 (2001).

    Article  Google Scholar 

  25. K. H. Park, K. Na, and H. M. Chung, Biotechnol. Lett. 27(4), 227 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demenkov, P.S., Aman, E.E. & Ivanisenko, V.A. Prediction of the changes in thermodynamic stability of proteins caused by single amino acid substitutions. BIOPHYSICS 51 (Suppl 1), 49–53 (2006). https://doi.org/10.1134/S0006350906070104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906070104

Keywords

Navigation