Skip to main content
Log in

Simulation of protein misfolding using a lattice model

  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Misfolding during protein self-assembly is the cause of numerous human and animal diseases. Understanding of the mechanism that underlies the protein folding into a normal or abnormal form can enhance the search for pathogen inhibitors and drug design. We used Monte Carlo dynamics to study the folding of a 27-membered heteropolymer on a cubic lattice. This lattice protein had a stable compact (“latent”) state that competed with the native state. It appeared that the free-energy surface of the system studied consisted of three basins, which corresponded to the semicompact globule, latent, and native states. We determined the bifurcation regions in the protein kinetic trajectories where the protein took a native or a latent structure and the probabilities of these structures to be formed. The effects of mutations on the probability of native state and the rate of its formation were modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (Academic Press, 2002).

  2. N. I. Dobson, Nat. Rev. Drug Discov. 2, 154 (2003).

    Article  Google Scholar 

  3. A. R. Dinner, A. Sali, L. J. Smith, et al., Trends Biochem. Sci. 25(7), 331 (2000).

    Article  Google Scholar 

  4. Y. Duan and P. A. Kollman, Science 282(5389), 740 (1998).

    Article  ADS  Google Scholar 

  5. D. J. Wales, Energy Landscapes: With Application to Clusters, Biomolecules and Glasses (Cambridge University Press, 2004).

  6. A. F. Voter, Phys. Rev. B 57(22), 13985 (1998).

    Google Scholar 

  7. M. R. Shirts and V. J. Pande, Phys. Rev. Lett. 86(22), 4983 (2001).

    Article  ADS  Google Scholar 

  8. V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich, Proteins 31(4), 335 (1998).

    Article  Google Scholar 

  9. P. M. Harrison, H. S. Chan, S. B. Prusiner, and F. E. Cohen, J. Mol. Biol. 286(2), 593 (1999).

    Article  Google Scholar 

  10. J. Z. Y. Chen, A. S. Lemak, J. R. Lepock, and J. P. Kemp, Proteins 51(22), 283 (2003).

    Article  Google Scholar 

  11. N. Gō, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).

    Article  Google Scholar 

  12. I. I. Titov and A. Yu. Palyanov, Biofizika 48(Suppl. 1), 133 (2003).

    Google Scholar 

  13. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21(6), 1087 (1953).

    Article  ADS  Google Scholar 

  14. O. V. Galzitskaya and A.V. Finkelstein, Protein Eng. 8(2), 883 (1995).

    Article  Google Scholar 

  15. A. Yu. Palyanov and I. I. Titov, Proceedings of the Fourth International Conference on Bioinformatics of Genome Regulation and Structure, Novosibirsk, Russia, 2004, Vol. 1, pp. 330–332.

  16. S. F. Chekmarev, S. V. Krivov, and M. Karplus, J. Phys. Chem. A 109, 5312 (2005).

    Google Scholar 

  17. M. Gruebele, Curr. Opin. Struct. Biol. 12(2), 161 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal’yanov, A.Y., Titov, I.I., Chekmarev, S.F. et al. Simulation of protein misfolding using a lattice model. BIOPHYSICS 51 (Suppl 1), 44–48 (2006). https://doi.org/10.1134/S0006350906070098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906070098

Key words

Navigation