Skip to main content
Log in

Exploring the Levinthal limit in protein folding

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal’s hypothesis that protein folding is a kinetic non-equilibrium process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anfınsen, C.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  ADS  Google Scholar 

  2. Levinthal, C.: How to Fold Graciously. In: Debrunner, J.T.P., Munck, E. (eds.) Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois, Vol. 22, pp. 22–24. University of Illinois Press (1969)

  3. Bryngelson, J.D., Wolynes, P.G.: Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. U. S. A. 84(21), 7524–7528 (1987). doi:10.1073/pnas.84.21.7524

    Article  ADS  Google Scholar 

  4. Dill, K., Chan, H.S.: From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997)

    Article  Google Scholar 

  5. Levinthal, C.: Are there pathways for protein folding?. J. Chim. Phys. 65, 44–45 (1968)

    Google Scholar 

  6. Lazaridis, T., Karplus, M.: “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997)

    Article  ADS  Google Scholar 

  7. Cruzeiro, L., Lopes, P.A.: Are the native states of proteins kinetic traps?. Mol. Phys. 107(14), 1485–1493 (2009)

    Article  ADS  Google Scholar 

  8. Cruzeiro, L., Degrève, L.: What is the shape of the distribution of protein conformations at equilibrium?. J. Biomol. Struct. Dyn. 33(7), 1539–1546 (2015). doi:10.1080/07391102.2014.966148. http://www.ncbi.nlm.nih.gov/pubmed/25229986

    Article  Google Scholar 

  9. Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., Thornton, J.: Cath- a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997)

    Article  Google Scholar 

  10. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nuc. Acid. Res. 28, 235–242 (2000)

    Article  Google Scholar 

  11. Gouda, H., Torigoe, H., Saito, A., Sato, M., Arata, Y., Shimada, I.: Three-dimensional solution structure of the b domain of staphylococcal protein a: Comparisons of the solution and crystal structures. Biochemistry 31, 9665–9672 (1992)

    Article  Google Scholar 

  12. Fazi, B., Cope, M., Douangamath, A., Ferracuti, S., Schirwitz, K., Zucconi, A., DG, D., Wilmanns, M., Cesareni, G., Castagnoli, L.: Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: Structural and functional analysis. J. Biol. Chem. 277, 5290–5298 (2002)

    Article  Google Scholar 

  13. Gallagher, T., Alexander, P., Bryan, P., Gillilan, G.: Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729 (1994)

    Article  Google Scholar 

  14. Hynes, T.R., Randal, M., Kennedy, L.A., Eigenbrot, C., Kossiakoff, A.A.: X-ray crystal structure of the protease inhibitor domain of Alzheimer’s amyloid beta-protein precursor. Biochemistry 29, 10,018–10,022 (1990)

    Article  Google Scholar 

  15. Case, D., Cheatham, T.I., Darden, T., Gohlke, H., Luo, R., Merz, K.J., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Computat. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  16. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–306 (2001)

  17. Apol, E., Apostolov, R., Berendsen, H., van Buuren, A., Bjelkmar, P., van Drunen, R., Feenstra, A., Groenhof, G., Kasson, P., Larsson, P., Meulenhoff, P., Murtola, T., Pll, S., Pronk, S., Schulz, R., Shirts, M., Sijbers, A., Tieleman, P., Hess, B., van der Spoel, D., Lindahl, E.: Gromacs user manual, version 4.5. www.gromacs.org (2010)

  18. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–435 (2008)

    Article  Google Scholar 

  19. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: Gromacs: fast, flexible, and free. J. Comp. Chem. 26, 1701–1701 (2005)

    Article  Google Scholar 

  20. van Gunsteren, W., Mark, A.: Validation of molecular dynamics simulation. J. Chem. Phys. 108, 6109–6116 (1998)

    Article  ADS  Google Scholar 

  21. Berendsen, H.J.C., Postma, J. P. M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Intermolecular Forces (pp. 331-342), Vol. 14, The Jerusalem Symposia on Quantum Chemistry and Biochemistry (Ed. B. Pullman). Reidel, Dordrecht, The Netherlands (1981)

  22. Humphrey, W., Dalke, A., Schulten, K.: Vmd: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  23. CASP: Critical Assessment of Protein Structure Prediction. In: Predictioncenter.org (2015)

  24. Baker, D., Sohl, J., Agard, D.: A protein-folding reaction under kinetic control. Nature 356, 263–265 (1992)

    Article  ADS  Google Scholar 

  25. Gettins, P.: Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4803 (2002)

    Article  Google Scholar 

  26. Sohl, J., Jaswal, S., Agard, D.: Unfolded conformations of alpha-lytic protease are more stable than its native state. Nature 395, 817–819 (1998)

    Article  ADS  Google Scholar 

  27. Cruzeiro, L.: Protein folding. In: Springborg, M. (ed.) Chemical Modelling, pp 89–114. Royal Society of Chemistry, London, UK (2010)

  28. Cruzeiro, L.: The VES hypothesis and protein conformational changes. Z. Phys. Chem. 230, 743–776 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

LC received national funds from FCT - Foundation for Science and Technology, Portugal, through the project UID/Multi/04326/2013. LD thanks the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and to the Conselho Nacional de Desenvolvimento Cientía co e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Cruzeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruzeiro, L., Degrève, L. Exploring the Levinthal limit in protein folding. J Biol Phys 43, 15–30 (2017). https://doi.org/10.1007/s10867-016-9431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9431-6

Keywords

Navigation