Skip to main content
Log in

Application of a photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A mathematical model of photosystem II (PSII) events was used to analyze chlorophyll fluorescence transients in the time domain from 100 ns to 10 s after excitation with a saturating 10-ns flash, applied as a part of specialized illumination protocol, using preparations of a thermophilic strain of the unicellular green alga, Chlorella pyrenoidosa Chick (using both intact and diuron-treated cells). Analysis of simulation results has proven that particular attention should be given to flash-induced recombination processes, including nonradiative recombination in PSII, while subsequent charge transfer along the electron transport chain of thylakoid membrane can be adequately described by a single reaction of quinone reoxidation. The PSII model was extended by taking inhibition by diuron of the electron transport in the acceptor side of PSII into account, which allowed simulation of fluorescence induction curves observed in the presence of this inhibitor. The model parameters were determined (stromal pH, rate constants of nonradiative recombination, and the initial reduction state of the quinone pool) which provided adequate simulation of experimentally observed ratios of the maximal and initial fluorescence levels (F m/F 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll of the antenna and the reaction centers

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

ETC:

electron transport chain

FIC:

fluorescence induction curves

Fl:

chlorophyll fluorescence

H +L :

protons of the thylakoid lumen

H +S :

protons of the chloroplast stroma

OEC:

oxygen-evolving complex

P680:

chlorophyll of photosystem II reaction center

Phe:

pheophytin

PSII:

photosystem II

QA and QB :

primary and secondary quinone acceptors of PSII

RC:

reaction center

YZ :

redox-active tyrosine of PSII

References

  1. R. Delosme, Biochim. Biophys. Acta 143, 1088 (1967).

    Google Scholar 

  2. C. R. Ireland, S. P. Long, and N. R. Baker, Planta 160, 550 (1984).

    Article  Google Scholar 

  3. C. Neubauer and U. Schreiber, Z. Naturforsch. 42c, 1246 (1987).

    Google Scholar 

  4. U. Schreiber and A. Krieger, FEBS Lett. 397, 131 (1996).

    Article  Google Scholar 

  5. R. J. Strasser, A. Srivastava, and Govindgee, Photochem. Photobiol. 61, 32 (1995).

    Google Scholar 

  6. R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, in Chlorophyll Fluorescence: A Signature of Photosynthesis, Ed. by G. C. Papageorgiou and Govindjee (Springer, Dordrecht, 2005), pp. 321–362.

    Google Scholar 

  7. N. Bukhov, E. Egorova, T. Krendeleva, et al., Photosynth. Res. 70, 155 (2001).

    Article  Google Scholar 

  8. G. Schansker, A. Srivastava, Govindjee, and R. J. Strasser, Funct. Plant Biol. 30, 785 (2003).

    Article  Google Scholar 

  9. P. Pospisil and H. Dau, Photosynth. Res. 65, 41 (2000).

    Article  Google Scholar 

  10. P. D. Laible, W. Zipfel, and T.G. Owens, Biophys. J. 66, 844 (1994).

    ADS  Google Scholar 

  11. G. Renger and A. Shulze, Photobiochem. Photobiophys. 9, 79 (1985).

    Google Scholar 

  12. O. Van Kooten, J. F. H. Snel, and W. J. Vredenberg, Photosynth. Res. 9, 211 (1986).

    Article  Google Scholar 

  13. A. Stirbet, Govindjee, B. J. Strasser, and R. J. Strasser, J. Theor. Biol. 193, 131 (1998).

    Article  Google Scholar 

  14. D. Lazar, Biochim. Biophys. Acta 1412, 1 (1999).

    Article  Google Scholar 

  15. D. Lazar, J. Theor. Biol. 220, 469 (2003).

    Article  Google Scholar 

  16. N. G. Bukhov, Kh. G. Damirov, T. G. Dzhibladze, et al., Nauchn. Dokl. Vyssh. Shkoly, Biol. Nauki, No. 4, 28 (1988).

  17. V. A. Karavaev and A. K. Kukushkin, Biofizika 38, 958 (1993).

    Google Scholar 

  18. A. Yu. Dubinskii and A. N. Tikhonov, Biofizika 42, 644 (1997).

    Google Scholar 

  19. G. Yu. Riznichenko, G. V. Lebedeva, O. V. Demin, and A. B. Rubin, J. Biol. Phys. 25, 177 (1999).

    Article  Google Scholar 

  20. G. V. Lebedeva, N. E. Belyaeva, G. Yu. Riznichenko, et al., Fiz. Khim. 74, 1897 (2000).

    Google Scholar 

  21. N. E. Belyaeva, Candidate’s Dissertation in Mathematical Physics (MGU, Moscow, 2004).

    Google Scholar 

  22. G. V. Lebedeva, N. E. Belyaeva, O. V. Demin, et al., Biofizika 47, 1044 (2002) [Biophysics 47, 968 (2002)].

    Google Scholar 

  23. N. E. Belyaeva, G. V. Lebedeva, and G. Yu. Riznichenko, in Mathematics, Computer, and Education (Progress-Traditsiya, Moscow, 2003), Vol. 10, pp. 263–276 [in Russian].

    Google Scholar 

  24. A. A. Bulychev, M. M. Niyazova, and A. B. Rubin, Biol. Membrany 4, 262 (1987).

    Google Scholar 

  25. A. A. Bulychev and W. J. Vredenberg, Bioelectrochemistry 54, 157 (2001).

    Article  Google Scholar 

  26. W. J. Vredenberg and A. A. Bulychev, Bioelectrochemistry 60, 87 (2003).

    Article  Google Scholar 

  27. W. J. Vredenberg, in Chlorophyll Fluorescence: A Signature of Photosynthesis, Ed. by G. C. Papageorgiou and Govindjee (Springer, Dordrecht, 2005), pp. 133–172.

    Google Scholar 

  28. S. A. Kuznetsova, Candidate’s Dissertation in Mathematical Physics (MGU, Moscow, 2000).

    Google Scholar 

  29. U. Schreiber, U. Schliwa, and W. Bilger, Photosynth. Res. 10, 51 (1986).

    Article  Google Scholar 

  30. G. H. Schatz, H. Brock, and A. R. Holzwarth, Biophys. J. 54, 397 (1988).

    Google Scholar 

  31. W. Leibl, J. Breton, J. Deprez, and H.-W. Trissl, Photosynth. Res. 22, 257 (1989).

    Article  Google Scholar 

  32. T. A. Roelofs, C.-H. Lee, and A. R. Holzwarth, Biophys. J. 61, 1147 (1992).

    Google Scholar 

  33. H. Dau and K. Sauer, Biochim. Biophys. Acta. 1102, 91 (1992).

    Article  Google Scholar 

  34. H. Dau, Photochem. Photobiol. 60, 1 (1994).

    Article  Google Scholar 

  35. K. Gibasiewicz, A. Dobek, J. Breton, and W. Leibl, Biophys. J. 80, 1617 (2001).

    Google Scholar 

  36. J. Lavergne and H.-W. Trissl, Biophys. J. 68, 2474 (1995).

    ADS  Google Scholar 

  37. G. Christen, R. Steffen, and G. Renger, FEBS Lett. 475 103 (2000).

    Article  Google Scholar 

  38. R. Steffen, G. Christen, and G. Renger, Biochemistry 40 173 (2001).

    Article  Google Scholar 

  39. G. Christen, A. Seeliger, and G. Renger, Biochemistry 38, 6082 (1999).

    Article  Google Scholar 

  40. A. Laisk and D.A. Walker, Proc. R. Soc. London, Ser. B 237, 417 (1989).

    Article  ADS  Google Scholar 

  41. I. A. Reynolds, E. A. Johnson, and C. Tanford, Proc. Natl. Acad. Sci. USA 82, 6869 (1985).

    Article  ADS  Google Scholar 

  42. A. B. Hope, R. R. Huilgol, M. Panizza, et al., Biochim. Biophys. Acta 1100, 15 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.E. Belyaeva, V.Z. Pashchenko, G. Renger, G.Yu. Riznichenko, A.B. Rubin, 2006, published in Biofizika, 2006, Vol. 51, No. 6, pp. 976–990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaeva, N.E., Pashchenko, V.Z., Renger, G. et al. Application of a photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse. BIOPHYSICS 51, 860–872 (2006). https://doi.org/10.1134/S0006350906060030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906060030

Key words

Navigation