Skip to main content
Log in

Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Progression of Alzheimer’s disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer’s disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer’s disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer’s disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid beta

Aβ(i-j):

a continuous linear fragment starting from i-th position to j-th position of the human Aβ amino acid sequence, 1DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA42 (single-letter amino acid code)

AD:

Alzheimer’s disease

CA:

cerebral amyloidogenesis in Alzheimer’s disease

HAEE:

tetrapeptide acetyl-HAEE-NH2

isoD7:

isomerized D7

isoD7-Aβ:

isoD7-bearing amyloid beta

NMR:

nuclear magnetic resonance

pS8:

phosphorylated serine residue at S8

pS8-Aβ:

pS8-bearing amyloid beta

References

  1. Gavrilova, S. I. (2007) Alzheimer’s Disease Pharmacotherapy [In Russian], Pul’s, Moscow, 360 p.

  2. Alzheimer's Association (2020) 2020 Alzheimer’s disease facts and figures, Alzheimers Dement., 16, 391-460, https://doi.org/10.1002/alz.12068.

    Article  Google Scholar 

  3. Editorial (2014) G8 dementia summit: a chance for united action, Lancet Neurol., 13, 1, https://doi.org/10.1016/S1474-4422(13)70275-8.

    Article  Google Scholar 

  4. URL: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on January 13, 2023).

  5. Yiannopoulou, K. G., and Papageorgiou, S. G. (2020) Current and future treatments in Alzheimer disease: an update, J. Central Nerv. System Dis., 12, https://doi.org/10.1177/1179573520907397.

    Article  Google Scholar 

  6. Long, J. M., and Holtzman, D. M. (2019) Alzheimer’s disease: an update on pathobiology and treatment strategies, Cell, 179, 312-339, https://doi.org/10.1016/j.cell.2019.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Querfurth, H. W., and LaFerla, F. M. (2010) Alzheimer’s disease, N. Engl. J. Med., 362, 329-344, https://doi.org/10.1056/NEJMra0909142.

    Article  CAS  PubMed  Google Scholar 

  8. Ghosh, S., Durgvanshi, S., Agarwal, S., Raghunath, M., and Sinha, J. K. (2020) Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s disease, Curr. Neuropharmacol., 18, 883-903, https://doi.org/10.2174/1570159X18666200429011823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cummings, J., Lee, G., Ritter, A., Sabbagh, M., and Zhong, K. (2020) Alzheimer’s disease drug development pipeline: 2020, Alzheimers Dement., 6, e12050, https://doi.org/10.1002/trc2.12050.

    Article  Google Scholar 

  10. Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., Sperling, R., Elliott, C., Masliah, E., Ryan, L., and Silverberg, N. (2018) NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease, Alzheimers Dement., 14, 535-562, https://doi.org/10.1016/j.jalz.2018.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jagust, W., Jack, C. R., Jr., Bennett, D. A., Blennow, K., Haeberlein, S. B., Holtzman, D. M., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., and Sperling, R. (2019) “Alzheimer’s disease” is neither “Alzheimer’s clinical syndrome” nor “dementia”, Alzheimers Dement., 15, 153-157, https://doi.org/10.1016/j.jalz.2018.11.002.

    Article  PubMed  Google Scholar 

  12. Serrano-Pozo, A., Frosch, M. P., Masliah, E., and Hyman, B. T. (2011) Neuropathological alterations in Alzheimer’s disease, Cold Spring Harb. Perspect. Med., 1, a006189, https://doi.org/10.1101/cshperspect.a006189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., and Barnes, C. A. (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease, Nat. Rev. Neurosci., 12, 585-601, https://doi.org/10.1038/nrn3085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Braak, H., Braak, E., and Bohl, J. (1993) Staging of Alzheimer-Related Cortical Destruction, Eur. Neurol., 33, 403-408, https://doi.org/10.1159/000116984.

    Article  CAS  PubMed  Google Scholar 

  15. Wahlund, L.-O., Julin, P., Lindqvist, J., and Scheltens, P. (1999) Visual assessment of medial temporal lobe atrophy in demented and healthy control subjects: correlation with volumetry, Psychiatry Res., 90, 193-199, https://doi.org/10.1016/S0925-4927(99)00016-5.

    Article  CAS  PubMed  Google Scholar 

  16. Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., Snyder, P. J., and Khachaturian, Z. S. (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease, Brain, 141, 1917-1933, https://doi.org/10.1093/brain/awy132.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Polis, B., and Samson, A. O. (2019) A new perspective on Alzheimer’s disease as a brain expression of a complex metabolic disorder, Alzheimer’s Disease [Internet] (Wisniewski, T., ed.) Codon Publications, Brisbane (AU), https://doi.org/10.15586/alzheimersdisease.2019.ch1.

  18. Karran, E., Mercken, M., and De Strooper, B. (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics, Nat. Rev. Drug Discov., 10, 698-712, https://doi.org/10.1038/nrd3505.

    Article  CAS  PubMed  Google Scholar 

  19. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med., 8, 595-608, https://doi.org/10.15252/emmm.201606210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golde, T. E., DeKosky, S. T., and Galasko, D. (2018) Alzheimer’s disease: the right drug, the right time, Science, 362, 1250-1251, https://doi.org/10.1126/science.aau0437.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, L. K., Chao, S. P., and Hu, C. J. (2020) Clinical trials of new drugs for Alzheimer’s disease, J. Biomed. Sci., 27, 18, https://doi.org/10.1186/s12929-019-0609-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masters, C. L., and Selkoe, D. J. (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer Disease, Cold Spring Harb. Perspect. Med., 2, a006262, https://doi.org/10.1101/cshperspect.a006262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, J., Gu, B. J., Masters, C. L., and Wang, Y.-J. (2017) A systemic view of Alzheimer disease – insights from amyloid-β metabolism beyond the brain, Nat. Rev. Neurol., 13, 612-623, https://doi.org/10.1038/nrneurol.2017.111.

    Article  CAS  PubMed  Google Scholar 

  24. Brothers, H. M., Gosztyla, M. L., and Robinson, S. R. (2018) The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease, Front. Aging Neurosci., 10, 118, https://doi.org/10.3389/fnagi.2018.00118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, L. M., and Strittmatter, S. M. (2017) Binding sites for amyloid-β oligomers and synaptic toxicity, Cold Spring Harb. Perspect. Med., 7, a024075, https://doi.org/10.1101/cshperspect.a024075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., and Knowles, T. P. J. (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci. USA, 110, 9758-9763, https://doi.org/10.1073/pnas.1218402110.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. USA, 82, 4245-4249, https://doi.org/10.1073/pnas.82.12.4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukherjee, S., Perez, K. A., Lago, L. C., Klatt, S., McLean, C. A., Birchall, I. E., Barnham, K. J., Masters, C. L., and Roberts, B. R. (2021) Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer’s disease, Brain Commun., 3, fcab028, https://doi.org/10.1093/braincomms/fcab028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walker, L. C. (2020) Aβ Plaques, Free Neuropathol., 1, 31, https://doi.org/10.17879/freeneuropathology-2020-3025.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stewart, K. L., and Radford, S. E. (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation, Biophys. Rev., 9, 405-419, https://doi.org/10.1007/s12551-017-0271-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kollmer, M., Close, W., Funk, L., Rasmussen, J., Bsoul, A., Schierhorn, A., Schmidt, M., Sigurdson, C. J., Jucker, M., and Fändrich, M. (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue, Nat. Commun., 10, 4760, https://doi.org/10.1038/s41467-019-12683-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takano, K. (2008) Amyloid beta conformation in aqueous environment, Curr. Alzheimer Res., 5, 540-547, https://doi.org/10.2174/156720508786898424.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188-1203, https://doi.org/10.1016/j.cell.2012.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jucker, M., and Walker, L. C. (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders, Ann. Neurol., 70, 532-540, https://doi.org/10.1002/ana.22615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soto, C., and Pritzkow, S. (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases, Nat. Neurosci., 21, 1332-1340, https://doi.org/10.1038/s41593-018-0235-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jucker, M., and Walker, L. C. (2018) Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases, Nat. Neurosci., 21, 1341-1349, https://doi.org/10.1038/s41593-018-0238-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Craddock, T. J. A., Tuszynski, J. A., Chopra, D., Casey, N., Goldstein, L. E., Hameroff, S. R., and Tanzi, R. E. (2012) The zinc dyshomeostasis hypothesis of Alzheimer’s disease, PLoS One, 7, e33552, https://doi.org/10.1371/journal.pone.0033552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., Markesbery, W. R. (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques, J. Neurol. Sci., 158, 47-52, https://doi.org/10.1016/S0022-510X(98)00092-6.

    Article  CAS  PubMed  Google Scholar 

  39. Bush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J. P., Gusella, J. F., Beyreuther, K., Masters, C. L., and Tanzi, R. E. (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc, Science, 265, 1464-1467, https://doi.org/10.1126/science.8073293.

    Article  CAS  PubMed  Google Scholar 

  40. Miller, Y., Ma, B., and Nussinov, R. (2010) Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states, Proc. Natl. Acad. Sci. USA, 107, 9490-9495, https://doi.org/10.1073/pnas.0913114107.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Miller, L. M., Wang, Q., Telivala, T. P., Smith, R. J., Lanzirotti, A., and Miklossy, J. (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease, J. Struct. Biol., 155, 30-37, https://doi.org/10.1016/j.jsb.2005.09.004.

    Article  CAS  PubMed  Google Scholar 

  42. Suh, S. W., Jensen, K. B., Jensen, M. S., Silva, D. S., Kesslak, P. J., Danscher, G., and Frederickson, C. J. (2000) Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains, Brain Res., 852, 274-278, https://doi.org/10.1016/S0006-8993(99)02096-X.

    Article  CAS  PubMed  Google Scholar 

  43. DeBenedictis, C. A., Raab, A., Ducie, E., Howley, S., Feldmann, J., Grabrucker, A. M. (2020) Concentrations of essential trace metals in the brain of animal species – a comparative study, Brain Sci., 10, 460, https://doi.org/10.3390/brainsci10070460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006) Counting the zinc-proteins encoded in the human genome, J. Proteome Res., 5, 196-201, https://doi.org/10.1021/pr050361j.

    Article  CAS  PubMed  Google Scholar 

  45. Krall, R. F., Tzounopoulos, T., and Aizenman, E. (2021) The function and regulation of zinc in the brain, Neuroscience, 457, 235-258, https://doi.org/10.1016/j.neuroscience.2021.01.010.

    Article  CAS  PubMed  Google Scholar 

  46. Prasad, A. S. (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc, Exp. Gerontol., 43, 370-377, https://doi.org/10.1016/j.exger.2007.10.013.

    Article  CAS  PubMed  Google Scholar 

  47. Tapiero, H., and Tew, K. D. (2003) Trace elements in human physiology and pathology: zinc and metallothioneins, Biomed. Pharmacother., 57, 399-411, https://doi.org/10.1016/S0753-3322(03)00081-7.

    Article  CAS  PubMed  Google Scholar 

  48. Cuajungco, M. P., and Fagét, K. Y. (2003) Zinc takes the center stage: its paradoxical role in Alzheimer’s disease, Brain Res. Rev., 41, 44-56, https://doi.org/10.1016/S0165-0173(02)00219-9.

    Article  CAS  PubMed  Google Scholar 

  49. Bush, A. I., Pettingell, W. H., Jr., Paradis, M. D., and Tanzi, R. E. (1994) Modulation of A beta adhesiveness and secretase site cleavage by zinc, J. Biol. Chem., 269, 12152-12158, https://doi.org/10.1016/S0021-9258(17)32694-7.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, S.-T., Howlett, G., and Barrow, C. J. (1999) Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer’s disease, Biochemistry, 38, 9373-9378, https://doi.org/10.1021/bi990205o.

    Article  CAS  PubMed  Google Scholar 

  51. Huang, X., Cuajungco, M. P., Atwood, C. S., Moir, R. D., Tanzi, R. E., and Bush, A. I. (2000) Alzheimer’s disease, β-amyloid protein and zinc, J. Nutrition, 130, 1488S-1492S, https://doi.org/10.1093/jn/130.5.1488S.

    Article  CAS  Google Scholar 

  52. Miura, T., Suzuki, K., Kohata, N., and Takeuchi, H. (2000) Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes, Biochemistry, 39, 7024-7031, https://doi.org/10.1021/bi0002479.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, D. S., McLaurin, J., Qin, K., Westaway, D., and Fraser, P. E. (2000) Examining the zinc binding site of the amyloid-beta peptide, Eur. J. Biochem., 267, 6692-6698, https://doi.org/10.1046/j.1432-1327.2000.01767.x.

    Article  CAS  PubMed  Google Scholar 

  54. Kozin, S. A., Zirah, S., Rebuffat, S., Hui Bon Hoa, G., and Debey, P. (2001) Zinc binding to Alzheimer’s Aβ(1-16) peptide results in stable soluble complex, Biochem. Biophys. Res. Commun., 285, 959-964, https://doi.org/10.1006/bbrc.2001.5284.

    Article  CAS  PubMed  Google Scholar 

  55. Zirah, S., Rebuffat, S., Kozin, S. A., Debey, P., Fournier, F., Lesage, D., and Tabet, J.-C. (2003) Zinc binding properties of the amyloid fragment Aβ(1-16) studied by electrospray-ionization mass spectrometry, Int. J. Mass Spectrom., 228, 999-1016, https://doi.org/10.1016/S1387-3806(03)00221-5.

    Article  CAS  Google Scholar 

  56. Zirah, S., Stefanescu, R., Manea, M., Tian, X., Cecal, R., Kozin, S. A., Debey, P., Rebuffat, S., and Przybylski, M. (2004) Zinc binding agonist effect on the recognition of the β-amyloid (4-10) epitope by anti-β-amyloid antibodies, Biochem. Biophys. Res. Commun., 321, 324-328, https://doi.org/10.1016/j.bbrc.2004.06.150.

    Article  CAS  PubMed  Google Scholar 

  57. Zirah, S., Kozin, S. A., Mazur, A. K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., and Rebuffat, S. (2006) Structural changes of region 1-16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging, J. Biol. Chem., 281, 2151-2161, https://doi.org/10.1074/jbc.M504454200.

    Article  CAS  PubMed  Google Scholar 

  58. Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zürcher-Neely, H. A., Heinrikson, R. L., Ball, M. J., and Greenberg, B. D. (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease, J. Biol. Chem., 268, 3072-3083, https://doi.org/10.1016/S0021-9258(18)53661-9.

    Article  CAS  PubMed  Google Scholar 

  59. Tsvetkov, P. O., Kulikova, A. A., Golovin, A. V., Tkachev, Y. V., Archakov, A. I., Kozin, S. A., and Makarov, A. A. (2010) Minimal Zn2+ binding site of amyloid-β, Biophys. J., 99, L84-L86, https://doi.org/10.1016/j.bpj.2010.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Talmard, C., Guilloreau, L., Coppel, Y., Mazarguil, H., and Faller, P. (2007) Amyloid-beta peptide forms monomeric complexes with Cu(II) and Zn(II) prior to aggregation, ChemBioChem, 8, 163-165, https://doi.org/10.1002/cbic.200600319.

    Article  CAS  PubMed  Google Scholar 

  61. Tsvetkov, P. O., Popov, I. A., Nikolaev, E. N., Archakov, A. I., Makarov, A. A., and Kozin, S. A. (2008) Isomerization of the Asp7 residue results in zinc-induced oligomerization of Alzheimer’s disease amyloid β(1-16) peptide, ChemBioChem, 9, 1564-1567, https://doi.org/10.1002/cbic.200700784.

    Article  CAS  PubMed  Google Scholar 

  62. Kozin, S. A., Mezentsev, Y. V., Kulikova, A. A., Indeykina, M. I., Golovin, A. V., Ivanov, A. S., Tsvetkov, P. O., and Makarov, A. A. (2011) Zinc-induced dimerization of the amyloid-β metal-binding domain 1-16 is mediated by residues 11-14, Mol. BioSystems, 7, 1053-1055, https://doi.org/10.1039/c0mb00334d.

    Article  CAS  Google Scholar 

  63. Kulikova, A. A., Tsvetkov, P. O., Indeykina, M. I., Popov, I. A., Zhokhov, S. S., Golovin, A. V., Polshakov, V. I., Kozin, S. A., Nudler, E., and Makarov, A. A. (2014) Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-beta metal-binding domain, Mol. BioSystems, 10, 2590-2596, https://doi.org/10.1039/C4MB00332B.

    Article  CAS  Google Scholar 

  64. Kumar, S., Rezaei-Ghaleh, N., Terwel, D., Thal, D. R., Richard, M., Hoch, M., Mc Donald, J. M., Wüllner, U., Glebov, K., Heneka, M. T., Walsh, D. M., Zweckstetter, M., and Walter, J. (2011) Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease, EMBO J., 30, 2255-2265, https://doi.org/10.1038/emboj.2011.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kozin, S. A., Kulikova, A. A., Istrate, A. N., Tsvetkov, P. O., Zhokhov, S. S., Mezentsev, Y. V., Kechko, O. I., Ivanov, A. S., Polshakov, V. I., and Makarov, A. A. (2015) The English (H6R) familial Alzheimer’s disease mutation facilitates zinc-induced dimerization of the amyloid-β metal-binding domain, Metallomics, 7, 422-425, https://doi.org/10.1039/C4MT00259H.

    Article  CAS  PubMed  Google Scholar 

  66. Istrate, A. N., Kozin, S. A., Zhokhov, S. S., Mantsyzov, A. B., Kechko, O. I., Pastore, A., Makarov, A. A., and Polshakov, V. I. (2016) Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization, Sci. Rep., 6, 21734, https://doi.org/10.1038/srep21734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gnoth, K., Piechotta, A., Kleinschmidt, M., Konrath, S., Schenk, M., Taudte, N., Ramsbeck, D., Rieckmann, V., Geissler, S., Eichentopf, R., Barendrecht, S., Hartlage-Rübsamen, M., Demuth, H.-U., Roßner, S., Cynis, H., Rahfeld, J.-U., and Schilling, S. (2020) Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology, Alzheimers Res. Ther., 12, 149, https://doi.org/10.1186/s13195-020-00719-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moro, M. L., Phillips, A. S., Gaimster, K., Paul, C., Mudher, A., Nicoll, J. A. R., and Boche, D. (2018) Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer’s disease, Acta Neuropathol. Commun., 6, 3, https://doi.org/10.1186/s40478-017-0505-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paoletti, P., Vergnano, A. M., Barbour, B., and Casado, M. (2009) Zinc at glutamatergic synapses, Neuroscience, 158, 126-136, https://doi.org/10.1016/j.neuroscience.2008.01.061.

    Article  CAS  PubMed  Google Scholar 

  70. Xie, X. M., and Smart, T. G. (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission, Nature, 349, 521-524, https://doi.org/10.1038/349521a0.

    Article  CAS  PubMed  Google Scholar 

  71. Kozin, S. A., Cheglakov, I. B., Ovsepyan, A. A., Telegin, G. B., Tsvetkov, P. O., Lisitsa, A. V., and Makarov, A. A. (2013) Peripherally applied synthetic peptide isoAsp7-Aβ(1-42) triggers cerebral β-amyloidosis, Neurotox. Res., 24, 370-376, https://doi.org/10.1007/s12640-013-9399-y.

    Article  CAS  PubMed  Google Scholar 

  72. Kulikova, A. A., Cheglakov, I. B., Kukharsky, M. S., Ovchinnikov, R. K., Kozin, S. A., and Makarov, A. A. (2016) Intracerebral injection of metal-binding domain of abeta comprising the isomerized Asp7 increases the amyloid burden in transgenic mice, Neurotox. Res., 29, 551-557, https://doi.org/10.1007/s12640-016-9603-y.

    Article  CAS  PubMed  Google Scholar 

  73. Barykin, E. P., Petrushanko, I. Y., Kozin, S. A., Telegin, G. B., Chernov, A. S., Lopina, O. D., Radko, S. P., Mitkevich, V. A., and Makarov, A. A. (2018) Phosphorylation of the amyloid-beta peptide inhibits zinc-dependent aggregation, prevents Na,K-ATPase inhibition, and reduces cerebral plaque deposition, Front. Mol. Neurosci., 11, 302, https://doi.org/10.3389/fnmol.2018.00302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kozin, S. A., Barykin, E. P., Telegin, G. B., Chernov, A. S., Adzhubei, A. A., Radko, S. P., Mitkevich, V. A., and Makarov, A. A. (2018) Intravenously injected amyloid-β peptide with isomerized Asp7 and phosphorylated Ser8 residues inhibits cerebral β-amyloidosis in AβPP/PS1 transgenic mice model of Alzheimer’s disease, Front. Neurosci., 12, 518, https://doi.org/10.3389/fnins.2018.00518.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alexander, A. G., Marfil, V., and Li, C. (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases, Front. Genet., 5, 279, https://doi.org/10.3389/fgene.2014.00279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, X., Barclay, J. W., Burgoyne, R. D., and Morgan, A. (2015) Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases, Chem. Central J., 9, 65, https://doi.org/10.1186/s13065-015-0143-y.

    Article  CAS  Google Scholar 

  77. Dostal, V., and Link, C. D. (2010) Assaying β-amyloid toxicity using a transgenic C. elegans model, J. Visual. Exp., 44, e2252, https://doi.org/10.3791/2252.

    Article  CAS  Google Scholar 

  78. Ewald, C. Y., and Li, C. (2010) Understanding the molecular basis of Alzheimer’s disease using a Caenorhabditis elegans model system, Brain Struct. Funct., 214, 263-283, https://doi.org/10.1007/s00429-009-0235-3.

    Article  CAS  PubMed  Google Scholar 

  79. Earley, B. J., Mendoza, A. D., Tan, C. H., and Kornfeld, K. (2021) Zinc homeostasis and signaling in the roundworm C. elegans, Biochim. Biophys. Acta Mol. Cell Res., 1868, 118882, https://doi.org/10.1016/j.bbamcr.2020.118882.

    Article  CAS  PubMed  Google Scholar 

  80. Kumar, J., Barhydt, T., Awasthi, A., Lithgow, G. J., Killilea, D. W., and Kapahi, P. (2016) Zinc Levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans, PLoS One, 11, e0153513, https://doi.org/10.1371/journal.pone.0153513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shimizu, T., Watanabe, A., Ogawara, M., Mori, H., and Shirasawa, T. (2000) Isoaspartate formation and neurodegeneration in Alzheimer’s disease, Arch. Biochem. Biophys., 381, 225-234, https://doi.org/10.1006/abbi.2000.1955.

    Article  CAS  PubMed  Google Scholar 

  82. Mitkevich, V. A., Barykin, E. P., Eremina, S., Pani, B., Katkova-Zhukotskaya, O., Polshakov, V. I., Adzhubei, A. A., Kozin, S. A., Mironov, A. S., Makarov, A. A., and Nudler, E. (2022) Zn-dependent β-amyloid aggregation and its reversal by the tetrapeptide HAEE, Aging Disease, 13, 1-10, https://doi.org/10.14336/AD.2022.0827.

    Article  Google Scholar 

  83. Tsvetkov, P. O., Cheglakov, I. B., Ovsepyan, A. A., Mediannikov, O. Y., Morozov, A. O., Telegin, G. B., and Kozin, S. A. (2015) Peripherally applied synthetic tetrapeptides HAEE and RADD slow down the development of cerebral beta-amyloidosis in abetaPP/PS1 transgenic mice, J. Alzheimers Disease, 46, 849-853, https://doi.org/10.3233/JAD-150031.

    Article  CAS  Google Scholar 

  84. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Mitkevich, V. A., Kozin, S. A., Zgoda, V. G., and Makarov, A. A. (2016) Chemical modifications of amyloid-beta(1-42) have a significant impact on the repertoire of brain amyloid-beta(1-42) binding proteins, Biochimie, 128-129, 55-58, https://doi.org/10.1016/j.biochi.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  85. Ershov, P. V., Mezentsev, Yu. V., Yablokov, E. O., Kaluzhskiy, L. A., Ivanov, A. S., Gnuchev, N. V., Mit'kevich, V. A., Makarov, A. A., and Kozin, S. A. (2020) Direct molecular fishing of zinc-dependent protein partners of amyloid beta 1-16 with Taiwan mutation (D7H) and phosphorylated SER8, Mol. Biol., 54, 904-910, https://doi.org/10.1134/S0026893320060035.

    Article  CAS  Google Scholar 

  86. Ivanov, A. S., Ershov, P. V., Mol’nar, A. A., Mezentsev, Yu. V., Kaluzhskiy, L. A., Yablokov, E. O., Florinskaya, A. V., Gnedenko, O. V., Medvedev, A. E., Kozin, S. A., Mit’kevich, V. A., Makarov, A. A., Gilep, A. A., Lushchik, A. Ya., Gaydukevich, I. V., and Usanov, S. A. (2016) Direct molecular fishing in investigating molecular partners of protein–protein and protein–peptide interactions, Russ. J. Bioorg. Chem., 42, 14-21, https://doi.org/10.1134/S1068162016010052.

    Article  CAS  Google Scholar 

  87. Deigin, V. I., Poluektova, E. A., Beniashvili, A. G., Kozin, S. A., and Poluektov, Y. M. (2022) Development of peptide biopharmaceuticals in Russia, Pharmaceutics, 14, 716, https://doi.org/10.3390/pharmaceutics14040716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kozin, S. A., Barykin, E. P., Mit’kevich, V. A., Makarov, A. A. (2018) Anti-amyloid therapy of Alzheimer’s disease: current state and prospects, Biochemistry (Moscow), 83, 1057-1067, https://doi.org/10.1134/S0006297918090079.

    Article  CAS  PubMed  Google Scholar 

  89. Kozin, S. A., and Makarov, A. A. (2019) The convergence of Alzheimer’s disease pathogenesis concepts, Mol. Biol., 53, 896-903, https://doi.org/10.1134/S0026893319060104.

    Article  CAS  Google Scholar 

  90. Kozin, S. A., Pol’shakov, V. I., Mezentsev, Yu. V., Ivanov, A. S., Zhokhov, S. S., Yurinskaya, M. M., Vinokurov, M. G., Makarov, A. A., and Mit'kevich, V. A. (2018) Enalaprilat inhibits zinc-dependent oligomerization of metal-binding domain of amyloid-beta isoforms and protects human neuroblastoma cells from toxic action of these isoforms, Mol. Biol., 52, 590-597, https://doi.org/10.1134/S0026893318040106.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 19-74-30007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Kozin.

Ethics declarations

The author declares no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 149-174.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, S.A. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. Biochemistry Moscow 88 (Suppl 1), S75–S87 (2023). https://doi.org/10.1134/S0006297923140055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923140055

Keywords

Navigation