Skip to main content

Molecular Insights into the Effect of Metals on Amyloid Aggregation

  • Protocol
  • First Online:
Computer Simulations of Aggregation of Proteins and Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2340))

Abstract

Amyloid diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and type 2 diabetes (T2D) are characterized by accumulation of misfolded proteins’ species, e.g., oligomers and fibrils. The formation of these species occurs via self-assemble of the misfolded proteins in a process which is named “aggregation.” It is known that essential divalent metal ions initiate the aggregation of these misfolded proteins, and that specific concentrations of these metal ions may be implicated in the pathology of amyloid diseases. This chapter focuses on the effects of two of the most common divalent metal ions in the brain—Zn2+ and Cu2+, and while Zn2+ ion is known as a metal that is release from the pancreas. Specifically, the spotlight of this chapter illustrates recent computational molecular modelling studies that investigate the effect of the concentrations of metal ions on aggregation of the misfolded proteins amylin, amyloid β, and α-synuclein. The challenges for computational molecular modeling and future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santner A, Uversky VN (2010) Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 2(6):378–392

    Article  CAS  PubMed  Google Scholar 

  2. Wedd A, Maret W (2014) Binding, transport and storage of metal ions in biological cells. RSC, London

    Google Scholar 

  3. Tamano H, Takeda A (2011) Dynamic action of neurometals at the synapse. Metallomics 3(7):656–661

    Article  CAS  PubMed  Google Scholar 

  4. Solomonov I, Korkotian E, Born B, Feldman Y, Bitler A, Rahimi F, Li H, Bitan G, Sagi I (2012) Zn2+-Abeta40 complexes form metastable quasi-spherical oligomers that are cytotoxic to cultured hippocampal neurons. J Biol Chem 287(24):20555–20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wineman-Fisher V, Bloch DN, Miller Y (2016) Challenges in studying the structures of metal-amyloid oligomers related to type 2 diabetes, Parkinson’s disease, and Alzheimer’s disease. Coord Chem Rev 327:20–26

    Article  CAS  Google Scholar 

  6. Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 32(4):240–244

    Article  CAS  PubMed  Google Scholar 

  7. Zhao HL, Lai FM, Tong PC, Zhong DR, Yang D, Tomlinson B, Chan JC (2003) Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes 52(11):2759–2766

    Article  CAS  PubMed  Google Scholar 

  8. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D’Alessio DA, Air EL, Woods SC (2001) Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142(11):5035

    Article  CAS  PubMed  Google Scholar 

  9. Reda TK, Geliebter A, Pi-Sunyer FX (2002) Amylin, food intake, and obesity. Obes Res 10(10):1087–1091

    Article  CAS  PubMed  Google Scholar 

  10. Akesson B, Panagiotidis G, Westermark P, Lundquist I (2003) Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul Pept 111(1–3):55–60

    Article  CAS  PubMed  Google Scholar 

  11. Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89(8):3629–3643

    Article  CAS  PubMed  Google Scholar 

  12. Maloy AL, Longnecker DS, Greenberg ER (1981) The relation of islet amyloid to the clinical type of diabetes. Hum Pathol 12(10):917–922

    Article  CAS  PubMed  Google Scholar 

  13. Kahn SE, Andrikopoulos S, Verchere CB (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48(2):241–253

    Article  CAS  PubMed  Google Scholar 

  14. Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL (2011) beta-cell loss and beta-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178(6):2632–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (2008) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47(48):12680–12688

    Article  CAS  PubMed  Google Scholar 

  16. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84(11):3881–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48(3):491–498

    Article  CAS  PubMed  Google Scholar 

  18. Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC (2007) Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56(1):65–71

    Article  CAS  PubMed  Google Scholar 

  19. Brender JR, Hartman K, Nanga RP, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh EN, Ramamoorthy A (2010) Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 132(26):8973–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brender JR, Krishnamoorthy J, Messina GM, Deb A, Vivekanandan S, La Rosa C, Penner-Hahn JE, Ramamoorthy A (2013) Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem Commun 49(32):3339–3341

    Article  CAS  Google Scholar 

  21. Wineman-Fisher V, Atsmon-Raz Y, Miller Y (2015) Orientations of residues along the beta-arch of self-assembled amylin fibril-like structures lead to polymorphism. Biomacromolecules 16(1):156–165

    Article  CAS  PubMed  Google Scholar 

  22. Wineman-Fisher V, Miller Y (2016) Structural insights into the polymorphism of self-assembled Amylin oligomers. Isr J Chem 56(8):590–598

    Article  CAS  Google Scholar 

  23. Wei L, Jiang P, Xu W, Li H, Zhang H, Yan L, Chan-Park MB, Liu XW, Tang K, Mu Y, Pervushin K (2011) The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. J Biol Chem 286(8):6291–6300

    Article  CAS  PubMed  Google Scholar 

  24. Wineman-Fisher V, Miller Y (2016) Effect of Zn(2+) ions on the assembly of amylin oligomers: insight into the molecular mechanisms. Phys Chem Chem Phys 18(31):21590–21599

    Article  CAS  PubMed  Google Scholar 

  25. Wineman-Fisher V, Miller Y (2017) Insight into a new binding site of zinc ions in fibrillar amylin. ACS Chem Neurosci 8(9):2078–2087

    Article  CAS  PubMed  Google Scholar 

  26. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060

    Article  CAS  PubMed  Google Scholar 

  27. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147

    Article  CAS  PubMed  Google Scholar 

  28. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152(4):871–877

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maret W (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8(9–10):1419–1441

    Article  CAS  PubMed  Google Scholar 

  30. Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10(8):677–693

    Article  CAS  PubMed  Google Scholar 

  31. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239

    Article  CAS  PubMed  Google Scholar 

  32. Wineman-Fisher V, Tudorachi L, Nissim E, Miller Y (2016) The removal of disulfide bonds in amylin oligomers leads to the conformational change of the ‘native’ amylin oligomers. Phys Chem Chem Phys 18(18):12438–12442

    Article  CAS  PubMed  Google Scholar 

  33. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5(3):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scott LE, Orvig C (2009) Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem Rev 109(10):4885–4910

    Article  CAS  PubMed  Google Scholar 

  35. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller Y, Ma B, Nussinov R (2012) Metal binding sites in amyloid oligomers: complexes and mechanisms. Coord Chem Rev 256:2245

    Article  CAS  Google Scholar 

  37. Huy PD, Vuong QV, La Penna G, Faller P, Li MS (2016) Impact of Cu(II) binding on structures and dynamics of Abeta42 monomer and dimer: molecular dynamics study. ACS Chem Neurosci 7(10):1348–1363

    Article  CAS  PubMed  Google Scholar 

  38. La Penna G, Li MS (2019) Computational models explain how copper binding to amyloid-beta peptide oligomers enhances oxidative pathways. Phys Chem Chem Phys 21(17):8774–8784

    Article  PubMed  Google Scholar 

  39. Liao Q, Owen MC, Bali S, Barz B, Strodel B (2018) Abeta under stress: the effects of acidosis, Cu(2+)-binding, and oxidation on amyloid beta-peptide dimers. Chem Commun 54(56):7766–7769

    Article  CAS  Google Scholar 

  40. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s beta by solid-state NMR spectroscopy. J Am Chem Soc 133(10):3390–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller Y, Ma B, Nussinov R (2010) Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc Natl Acad Sci U S A 107(21):9490–9495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller Y, Ma B, Nussinov R (2010) Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 110(8):4820–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noy D, Solomonov I, Sinkevich O, Arad T, Kjaer K, Sagi I (2008) Zinc-amyloid beta interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. J Am Chem Soc 130(4):1376–1383

    Article  CAS  PubMed  Google Scholar 

  44. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    Article  CAS  PubMed  Google Scholar 

  45. Rao JN, Dua V, Ulmer TS (2008) Characterization of alpha-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry 47(16):4651–4656

    Article  CAS  PubMed  Google Scholar 

  46. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228

    Article  CAS  PubMed  Google Scholar 

  47. Bisaglia M, Tessari I, Mammi S, Bubacco L (2009) Interaction between alpha-synuclein and metal ions, still looking for a role in the pathogenesis of Parkinson’s disease. NeuroMolecular Med 11(4):239–251

    Article  CAS  PubMed  Google Scholar 

  48. Rybicki BA, Johnson CC, Uman J, Gorell JM (1993) Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 8(1):87–92

    Article  CAS  PubMed  Google Scholar 

  49. Singh C, Ahmad I, Kumar A (2007) Pesticides and metals induced Parkinson’s disease: involvement of free radicals and oxidative stress. Cell Mol Biol 53(5):19–28

    CAS  PubMed  Google Scholar 

  50. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–44296

    Article  CAS  PubMed  Google Scholar 

  51. Pall HS, Williams AC, Blake DR, Lunec J, Gutteridge JM, Hall M, Taylor A (1987) Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet 2(8553):238–241

    Article  CAS  PubMed  Google Scholar 

  52. Binolfi A, Quintanar L, Bertoncinic CW, Griesinger C, Fernández CO (2012) Bioinorganic chemistry of copper coordination to alpha-synuclein: relevance to Parkinson’s disease. Coord Chem Rev 256(19–20):2188–2201

    Article  CAS  Google Scholar 

  53. Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128(30):9893–9901

    Article  CAS  PubMed  Google Scholar 

  54. Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci U S A 102(12):4294–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Binolfi A, Rodriguez EE, Valensin D, D’Amelio N, Ippoliti E, Obal G, Duran R, Magistrato A, Pritsch O, Zweckstetter M, Valensin G, Carloni P, Quintanar L, Griesinger C, Fernandez CO (2010) Bioinorganic chemistry of Parkinson’s disease: structural determinants for the copper-mediated amyloid formation of alpha-synuclein. Inorg Chem 49(22):10668–10679

    Article  CAS  PubMed  Google Scholar 

  56. Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H (2018) Cryo-EM structure of alpha-synuclein fibrils. elife 7:e36402

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L (2018) Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9(1):3609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, Courtney JM, Kim JK, Barclay AM, Kendall A, Wan W, Stubbs G, Schwieters CD, Lee VM, George JM, Rienstra CM (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23(5):409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bloch DN, Miller Y (2017) Study of molecular mechanisms of alpha-synuclein assembly: insight into a cross-beta structure in the N-termini of new alpha-synuclein fibrils. ACS Omega 2(7):3363–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A 102(5):1430–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Binolfi A, Valiente-Gabioud AA, Duran R, Zweckstetter M, Griesinger C, Fernandez CO (2011) Exploring the structural details of Cu(I) binding to alpha-synuclein by NMR spectroscopy. J Am Chem Soc 133(2):194–196

    Article  CAS  PubMed  Google Scholar 

  62. Miotto MC, Valiente-Gabioud AA, Rossetti G, Zweckstetter M, Carloni P, Selenko P, Griesinger C, Binolfi A, Fernandez CO (2015) Copper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding. J Am Chem Soc 137(20):6444–6447

    Article  CAS  PubMed  Google Scholar 

  63. Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C (2005) Metals accelerate the formation and direct the structure of amyloid fibrils of NAC. J Inorg Biochem 99(9):1920–1927

    Article  CAS  PubMed  Google Scholar 

  64. Bloch DN, Kolkowska P, Tessari I, Baratto MC, Sinicropi A, Bubacco L, Mangani S, Pozzi C, Valensin D, Miller Y (2019) Fibrils of alpha-synuclein abolish the affinity of Cu(2+)-binding site to His50 and induce hopping of Cu(2+) ions in the termini. Inorg Chem 58(16):10920–10927

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifat Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miller, Y. (2022). Molecular Insights into the Effect of Metals on Amyloid Aggregation. In: Li, M.S., Kloczkowski, A., Cieplak, M., Kouza, M. (eds) Computer Simulations of Aggregation of Proteins and Peptides . Methods in Molecular Biology, vol 2340. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1546-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1546-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1545-4

  • Online ISBN: 978-1-0716-1546-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics