Skip to main content
Log in

Lel A. Drachev and the Direct Electrometric Method

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the bioenergetics studies, the direct electrometric method played an important role. This method is based on measuring the electrical potential difference (Δψ) between two compartments of the experimental cell generated by some membrane proteins. These proteins are incorporated into closed lipid–protein membrane vesicles associated with an artificial lipid membrane that separates the compartments. The very existence of such proteins able to generate Δψ was one of the consequences of Peter Mitchell’s chemiosmotic concept. The discovery and investigation of their functioning contributed to the recognition of this concept and, eventually the well-deserved awarding of the Nobel Prize to P. Mitchell. Lel A. Drachev (1926-2022) was one of the main authors of the direct electrometrical method. With his participation, key studies were carried out on the electrogenesis of photosynthetic and respiratory membrane proteins, including bacteriorhodopsin, visual rhodopsin, photosynthetic bacterial reaction centers, cytochrome oxidase and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

Δψ :

transmembrane potential difference

ΔµH + :

transmembrane electrochemical potential difference of hydrogen atoms

ALM:

artificial lipid membrane

bR:

bacteriorhodopsin

PSI and PSII:

photosystems I and II

RC:

bacterial reaction center

References

  1. Tikhonov, A. N. (2012) Energetic and regulatory role of proton potential in chloroplasts, Biokhimiya, 77, 1155-1176, https://doi.org/10.1134/S0006297912090027.

    Article  CAS  Google Scholar 

  2. Johnson, M. P., and Ruban, A. V. (2014) Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes, Photosynth. Res., 119, 233-242, https://doi.org/10.1007/s11120-013-9817-2.

    Article  CAS  PubMed  Google Scholar 

  3. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483-485, https://doi.org/10.1016/0968-0004(84)90317-7.

    Article  CAS  Google Scholar 

  4. Weber, B. H., and Prebble, J. N. (2006) An issue of originality and priority: the correspondence and theories of oxidative phosphorylation of Peter Mitchell and Robert JP Williams, 1961-1980, J. History Biol., 39, 125-163, https://doi.org/10.1007/s10739-005-3052-4.

    Article  Google Scholar 

  5. Junge, W., and Witt, H. T. (1968) On the ion transport system of photosynthesis – investigations on a molecular level, Zeitschrift Für Naturforschung B, 23, 244-254, https://doi.org/10.1515/znb-1968-0222.

    Article  CAS  Google Scholar 

  6. Bulychev, A., Andrianov, V., Kurella, G., and Litvin, F. (1971) Transmembrane potential of a cell and a chloroplast of a higher terrestrial plant, Fiziol. Rast., 18, 248-256.

    CAS  Google Scholar 

  7. Bulychev, A., Andrianov, V., Kurella, G., and Litvin, F. (1971) Transmembrane potential of a chloroplast and its photoinduced changes, Dokl. Akad. Nauk SSSR, 197, 473-477.

    CAS  Google Scholar 

  8. Bulychev, A. A., Andrianov, V. K., Kurella, G. A., and Litvin, F. F. (1972) Micro-electrode measurements of the transmembrane potential of chloroplasts and its photoinduced changes, Nature, 236, 175-177, https://doi.org/10.1038/236175a0.

    Article  CAS  Google Scholar 

  9. Witt, H. T., and Zickler, A. (1974) Vectorial electron flow across the thylakoid membrane. Further evidence by kinetic measurements with an electrochromic and electrical method, FEBS Lett., 39, 205-208, https://doi.org/10.1016/0014-5793(74)80051-7.

    Article  CAS  PubMed  Google Scholar 

  10. Fowler, C. F., and Kok, B. (1974) Direct observation of a light-induced electric field in chloroplasts, Biochim. Biophys. Acta Bioenergetics, 357, 308-318, https://doi.org/10.1016/0005-2728(74)90069-3.

    Article  CAS  Google Scholar 

  11. Joliot, P., and Joliot, A. (1984) Electron transfer between the two photosystems. I. Flash excitation under oxidizing conditions, Biochim. Biophys. Acta Bioenergetics, 765, 210-218, https://doi.org/10.1016/0005-2728(84)90015-X.

    Article  CAS  Google Scholar 

  12. Deprez, J., Trissl, H. W., and Breton, J. (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution, Proc. Natl. Acad. Sci. USA, 83, 1699-1703, https://doi.org/10.1073/pnas.83.6.1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trissl, H.-W., Leibl, W., Deprez, J., Dobek, A., and Breton, J. (1987) Trapping and annihilation in the antenna system of photosystem I, Biochim. Biophys. Acta Bioenergetics, 893, 320-332, https://doi.org/10.1016/0005-2728(87)90053-3.

    Article  CAS  Google Scholar 

  14. Liberman, E., Mokhova, E., Skulachev, V., and Topaly, V. (1968) Effects of the uncouplers of oxidative phosphorylation on bimolecular phospholipid membranes, Biofizika, 13, 188-193.

    CAS  PubMed  Google Scholar 

  15. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.

    Article  CAS  PubMed  Google Scholar 

  16. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat. New Biol., 233, 149-152, https://doi.org/10.1038/newbio233149a0.

    Article  CAS  PubMed  Google Scholar 

  17. Drachev, L. A., Kaulen, A. D., Ostroumov, S. A., and Skulachev, V. P. (1974) Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane, FEBS Lett., 39, 43-45, https://doi.org/10.1016/0014-5793(74)80012-8.

    Article  CAS  PubMed  Google Scholar 

  18. Kagawa, Y., and Racker, E. (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem., 246, 5477-5487, https://doi.org/10.1016/S0021-9258(18)61930-1.

    Article  CAS  Google Scholar 

  19. Kayushin, L. P., and Skulachev, V. P. (1974) Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating Δψ and ΔpH, FEBS Lett., 39, 39-42, https://doi.org/10.1016/0014-5793(74)80011-6.

    Article  CAS  PubMed  Google Scholar 

  20. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y., and Skulachev, V. P. (1976) Reconstitution of biological molecular generators of electric current. Bacteriorhodopsin, J. Biol. Chem., 251, 7059-7065, https://doi.org/10.1016/S0021-9258(17)32940-X.

    Article  CAS  PubMed  Google Scholar 

  21. Drachev, L., Kaulen, A., Samuilov, V., Severina, I., Semenov, A., Skulachev, V. P., and Chekulaeva, L. N. (1979) Incorporation of proteoliposomes and chromatophores into membranes based on filters, Biofizika, 24, 1035-1042.

    CAS  PubMed  Google Scholar 

  22. Drachev, L. A., Kaulen, A. D., Semenov, A. Y., Severina, I. I., and Skulachev, V. P. (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins, Anal. Biochem., 96, 250-262, https://doi.org/10.1016/0003-2697(79)90580-3.

    Article  CAS  PubMed  Google Scholar 

  23. Bol’shakov, V. I., Drachev, A. L., Kalamkarov, G. R., Kaulen, A. D., Ostrovsky, M. A., and Skulachev, V. P. (1979) Common properties of bacterial and visual rhodopsins: conversion of light energy into electric potential difference, Dokl. Akad. Nauk SSSR, 249, 1462-1466.

    PubMed  Google Scholar 

  24. Drachev, L. A., Kalamkarov, G. R., Kaulen, A. D., Ostrovsky, M. A., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes: II. Visual rhodopsin, Eur. J. Biochem., 117, 471-481, https://doi.org/10.1111/j.1432-1033.1981.tb06362.x.

    Article  CAS  PubMed  Google Scholar 

  25. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Yu., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  26. Drachev, L. A., Kondrashin, A. A., Semenov, A. Y., and Skulachev, V. P. (1980) Reconstitution of biological molecular generators of electric current: transhydrogenase, Eur. J. Biochem., 113, 213-217, https://doi.org/10.1111/j.1432-1033.1980.tb06158.x.

    Article  CAS  PubMed  Google Scholar 

  27. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Kondrashin, A. A., Samuilov, V. D., Semenov, A. Y., and Skulachev, V. P. (1976) Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes, Biochim. Biophys. Acta Bioenergetics, 440, 637-660, https://doi.org/10.1016/0005-2728(76)90048-7.

    Article  CAS  Google Scholar 

  28. Drachev, L. A., Kaulen, A. D., Khitrina, L., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes: I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, https://doi.org/10.1111/j.1432-1033.1981.tb06361.x.

    Article  CAS  PubMed  Google Scholar 

  29. Drachev, L. A., Semenov, A. Y., Skulachev, V. P., Smirnova, I. A., Chamorovsky, S. K., Kononenko, A. A., Rubin, A. B., and Uspenskaya, N. Ya. (1981) Fast stages of photoelectric processes in biological membranes: III. Bacterial photosynthetic redox system, Eur. J. Biochem., 117, 483-489, https://doi.org/10.1111/j.1432-1033.1981.tb06363.x.

    Article  CAS  PubMed  Google Scholar 

  30. Chamorovsky, S. K., Drachev, A. L., Drachev, L. A., Karagul’yan, A. K., Kononenko, A. A., Rubin, A. B., Semenov, A. Yu., and Skulachev, V. P. (1985) Fast phases of the generation of the transmembrane electric potential in chromatophores of the photosynthetic bacterium Ectothiorhodospira shaposhnikovii, Biochim. Biophys. Acta Bioenergetics, 808, 201-208, https://doi.org/10.1016/0005-2728(85)90044-1.

    Article  CAS  Google Scholar 

  31. Drachey, L. A., Kaminskaya, O. P., Konstantinov, A. A., Kotova, E. A., Mamedov, M. D., Samuilov, V. D., Semenov, A. Y., and Skulachev, V. P. (1986) The effect of cytochrome c, hexammineruthenium and ubiquinone-10 on the kinetics of photoelectric responses of Rhodospirillum rubrum reaction centres, Biochim. Biophys. Acta Bioenergetics, 848, 137-146, https://doi.org/10.1016/0005-2728(86)90169-6.

    Article  Google Scholar 

  32. Kaminskaya, O. P., Drachev, L. A., Konstantinov, A. A., Semenov, A. Y., and Skulachev, V. P. (1986) Electrogenic reduction of the secondary quinone acceptor in chromatophores of Rhodospirillum rubrum: rapid kinetics measurements, FEBS Lett., 202, 224-228, https://doi.org/10.1016/0014-5793(86)80691-3.

    Article  CAS  Google Scholar 

  33. Drachev, L. A., Kaurov, B. S., Mamedov, M. D., Mulkidjanian, A. Y., Semenov, A. Y., Shinkarev, V. P., Skulachev, V. P., and Verkhovsky, M. I. (1989) Flash-induced electrogenic events in the photosynthetic reaction center and bc1 complexes of Rhodobacter sphaeroides chromatophores, Biochim. Biophys. Acta Bioenergetics, 973, 189-197, https://doi.org/10.1016/S0005-2728(89)80421-9.

    Article  CAS  Google Scholar 

  34. Mamedov, M. D., Mamedova, A. A., Chamorovsky, S. K., and Semenov, A. Y. (2001) Electrogenic reduction of the primary electron donor P700 by plastocyanin in photosystem I complexes, FEBS Lett., 500, 172-176, https://doi.org/10.1016/S0014-5793(01)02615-1.

    Article  CAS  PubMed  Google Scholar 

  35. Mamedov, M. D., Gourovskaya, K. N., Vassiliev, I. R., Golbeck, J. H., and Sememov, A. Y. (1998) Electrogenicity accompanies photoreduction of the iron-sulfur clusters FA and FB in photosystem I, FEBS Lett., 431, 219-223, https://doi.org/10.1016/S0014-5793(98)00759-5.

    Article  CAS  PubMed  Google Scholar 

  36. Chamorovsky, K., Chamorovsky, S., and Semenov, A. (2005) Dielectric and photoelectric properties of photosynthetic reaction centers, Biokhimiya, 70, 315-322, https://doi.org/10.1007/s10541-005-0109-0.

    Article  CAS  Google Scholar 

  37. Semenov, A. Y., Mamedov, M. D., and Chamorovsky, S. K. (2006) Electrogenic reactions associated with electron transfer in photosystem I, Photosystem I: The Light-driven Plastocyanin: Ferredoxin Oxidoreductase, Springer, p. 319-338, https://doi.org/10.1007/978-1-4020-4256-0_21.

  38. Ptushenko, V. V., Cherepanov, D. A., Krishtalik, L. I., and Semenov, A. Y. (2008) Semi-continuum electrostatic calculations of redox potentials in photosystem I, Photosynth. Res., 97, 55-74, https://doi.org/10.1007/s11120-008-9309-y.

    Article  CAS  PubMed  Google Scholar 

  39. Krishtalik, L. I. (1989) Dielectric constant in calculations of the electrostatics of biopolymers, J. Theor. Biol., 139, 143-154, https://doi.org/10.1016/S0022-5193(89)80097-9.

    Article  CAS  Google Scholar 

  40. Krishtalik, L. I., Kuznetsov, A. M., and Mertz, E. L. (1997) Electrostatics of proteins: description in terms of two dielectric constants simultaneously, Proteins Struct. Funct. Bioinformatics, 28, 174-182, https://doi.org/10.1002/(SICI)1097-0134(199706)28:2<174::AID-PROT6>3.0.CO;2-F.

    Article  CAS  Google Scholar 

  41. Brzezinski, P., Okamura, M. Y., and Feher, G. (1992) Structural changes following the formation of D+ QA in bacterial reaction centers: measurement of light-induced electrogenic events in RCs incorporated in a phospholipid monolayer, The Photosynthetic Bacterial Reaction Center II: Structure, Spectroscopy and Dynamics, pp. 321-330, https://doi.org/10.1007/978-1-4615-3050-3_36.

  42. Sigfridsson, K., Hansson, O., and Brzezinski, P. (1995) Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers, Proc. Natl. Acad. Sci. USA, 92, 3458-3462, https://doi.org/10.1073/pnas.92.8.3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II, Biochemistry, 36, 9304-9315, https://doi.org/10.1021/bi963114p.

    Article  CAS  PubMed  Google Scholar 

  44. Wikström, M., and Verkhovsky, M. I. (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases, Biochim. Biophys. Acta Bioenergetics, 1767, 1200-1214, https://doi.org/10.1016/j.bbabio.2007.06.008.

    Article  CAS  Google Scholar 

  45. Beinert, H. (1992) Trails of inquiry and thought leading toward today’s bioenergetics, Biochim. Biophys. Acta Bioenergetics, 1101, 125-133, https://doi.org/10.1016/S0005-2728(05)80002-7.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-74-00025).

Author information

Authors and Affiliations

Authors

Contributions

A.Yu.S. formulated the concept of the article; A.Yu.S. and V.V.P. wrote the manuscript, discussed and edited the text.

Corresponding author

Correspondence to Alexey Y. Semenov.

Ethics declarations

The authors declare no conflict of interests. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptushenko, V.V., Semenov, A.Y. Lel A. Drachev and the Direct Electrometric Method. Biochemistry Moscow 88, 1417–1427 (2023). https://doi.org/10.1134/S0006297923100012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923100012

Keywords

Navigation