Skip to main content

Advertisement

Log in

Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Leukemia is a blood cancer originating in the blood and bone marrow. Therapy-related leukemia is associated with prior chemotherapy. Although cancer therapy with DNA topoisomerase II inhibitors is one of the most effective cancer treatments, its side effects include development of secondary leukemia characterized by the chromosomal rearrangements affecting AML1 or MLL genes. Recurrent chromosomal translocations in the therapy-related leukemia differ from chromosomal rearrangements associated with other neoplasias. Here, we reviewed the factors that drive chromosomal translocations induced by cancer treatment with DNA topoisomerase II inhibitors, such as mobility of ends of double-strand DNA breaks formed before the translocation and gain of function of fusion proteins generated as a result of translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AML1 (or RUNX1):

acute myeloid leukemia-associated gene (RUNX family transcription factor 1)

DSB:

double-strand DNA break

ETO (or RUNX1T1):

RUNX1 partner transcriptional co-repressor 1; gene often rearranged with the formation of translocation t(8;21)

MLL (or KMT2A):

mixed phenotype leukemia-associated gene (lysin-specific methyltransferase 2A)

NHEJ:

non-homologous end joining

References

  1. Becker, M. W., and Jordan, C. T. (2011) Leukemia stem cells in 2010: Current understanding and future directions, Blood Rev., 25, 75-81, https://doi.org/10.1016/j.blre.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J. H. (2012) Mechanisms and impacts of chromosomal translocations in cancers, Front. Med., 6, 263-274, https://doi.org/10.1007/s11684-012-0215-5.

    Article  PubMed  Google Scholar 

  3. Andersson, A. K., Ma, J., Wang, J., Chen, X., Gedman, A. L., Dang, J., Nakitandwe, J., Holmfeldt, L., Parker, M., Easton, J., Huether, R., Kriwacki, R., Rusch, M., Wu, G., Li, Y., Mulder, H., Raimondi, S., Pounds, S., Kang, G., Shi, L., Becksfort, J., Gupta, P., Payne-Turner, D., Vadodaria, B., Boggs, K., Yergeau, D., Manne, J., Song, G., Edmonson, M., Nagahawatte, P., Wei, L., Cheng, C., Pei, D., Sutton, R., Venn, N. C., Chetcuti, A., Rush, A., Catchpoole, D., Heldrup, J., Fioretos, T., Lu, C., Ding, L., Pui, C. H., Shurtleff, S., Mullighan, C. G., Mardis, E. R., Wilson, R. K., Gruber, T. A., Zhang, J., and Downing, J. R. (2015) The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias, Nat. Genet., 47, 330-337, https://doi.org/10.1038/ng.3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greaves, M. (2015) When one mutation is all it takes, Cancer Cell, 27, 433-434, https://doi.org/10.1016/j.ccell.2015.03.016.

    Article  CAS  PubMed  Google Scholar 

  5. Balgobind, B. V., Raimondi, S. C., Harbott, J., Zimmermann, M., Alonzo, T. A., Auvrignon, A., Beverloo, H. B., Chang, M., Creutzig, U., Dworzak, M. N., Forestier, E., Gibson, B., Hasle, H., Harrison, C. J., Heerema, N. A., Kaspers, G. J. L., Leszl, A., Litvinko, N., Lo Nigro, L., Morimoto, A., Perot, C., Pieters, R., Reinhardt, D., Rubnitz, J. E., Smith, F. O., Stary, J., Stasevich, I., Strehl, S., Taga, T., Tomizawa, D., Webb, D., Zemanova, Z., Zwaan, C. M., and Van Den Heuvel-Eibrink, M. M. (2009) Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study, Blood, 114, 2489-2496, https://doi.org/10.1182/blood-2009-04-215152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Döhner, H., Estey, E., Grimwade, D., Amadori, S., Appelbaum, F. R., Büchner, T., Dombret, H., Ebert, B. L., Fenaux, P., Larson, R. A., Levine, R. L., Lo-Coco, F., Naoe, T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M., Sierra, J., Tallman, M. S., Tien, H. F., Wei, A. H., Löwenberg, B., and Bloomfield, C. D. (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel, Blood129, 424-447, https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, C., Burmeister, T., Gröger, D., Tsaur, G., Fechina, L., Renneville, A., Sutton, R., Venn, N. C., Emerenciano, M., Pombo-De-Oliveira, M. S., Barbieri Blunck, C., Almeida Lopes, B., Zuna, J., Trka, J., Ballerini, P., Lapillonne, H., De Braekeleer, M., Cazzaniga, G., Corral Abascal, L., Van Der Velden, V. H. J., Delabesse, E., Park, T. S., Oh, S. H., Silva, M. L. M., Lund-Aho, T., Juvonen, V., Moore, A. S., Heidenreich, O., Vormoor, J., Zerkalenkova, E., Olshanskaya, Y., Bueno, C., Menendez, P., Teigler-Schlegel, A., Zur Stadt, U., Lentes, J., Göhring, G., Kustanovich, A., Aleinikova, O., Schäfer, B. W., Kubetzko, S., Madsen, H. O., Gruhn, B., Duarte, X., Gameiro, P., Lippert, E., Bidet, A., Cayuela, J. M., Clappier, E., Alonso, C. N., Zwaan, C. M., Van Den Heuvel-Eibrink, M. M., Izraeli, S., Trakhtenbrot, L., Archer, P., Hancock, J., Möricke, A., Alten, J., Schrappe, M., Stanulla, M., Strehl, S., Attarbaschi, A., Dworzak, M., Haas, O. A., Panzer-Grümayer, R., Sedék, L., Szczepa, T., Caye, A., Suarez, L., Cavé, H., and Marschalek, R. (2018) The MLL recombinome of acute leukemias in 2017, Leukemia, 32, 273-284, https://doi.org/10.1038/leu.2017.213.

    Article  CAS  PubMed  Google Scholar 

  8. Lomov, N., Zerkalenkova, E., Lebedeva, S., Viushkov, V., and Rubtsov, M. A. (2021) Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the KMT2A/MLL gene, Crit. Rev. Clin. Lab. Sci., 58, 180-206, https://doi.org/10.1080/10408363.2020.1844135.

    Article  CAS  PubMed  Google Scholar 

  9. Germini, D., Tsfasman, T., Klibi, M., El-Amine, R., Pichugin, A., Iarovaia, O. V., Bilhou-Nabera, C., Subra, F., Bou Saada, Y., Sukhanova, A., Boutboul, D., Raphaël, M., Wiels, J., Razin, S. V., Bury-Moné, S., Oksenhendler, E., Lipinski, M., and Vassetzky, Y. S. (2017) HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells, Leukemia, 31, 2515-2522, https://doi.org/10.1038/leu.2017.106.

    Article  CAS  PubMed  Google Scholar 

  10. Grande, B. M., Gerhard, D. S., Jiang, A., Griner, N. B., Abramson, J. S., Alexander, T. B., Allen, H., Ayers, L. W., Bethony, J. M., Bhatia, K., Bowen, J., Casper, C., Choi, J. K., Culibrk, L., Davidsen, T. M., Dyer, M. A., Gastier-Foster, J. M., Gesuwan, P., Greiner, T. C., Gross, T. G., Hanf, B., Harris, N. L., He, Y., Irvin, J. D., Jaffe, E. S., Jones, S. J. M., Kerchan, P., Knoetze, N., Leal, F. E., Lichtenberg, T. M., Ma, Y., Martin, J. P., Martin, M. R., Mbulaiteye, S. M., Mullighan, C. G., Mungall, A. J., Namirembe, C., Novik, K., Noy, A., Ogwang, M. D., Omoding, A., Orem, J., Reynolds, S. J., Rushton, C. K., Sandlund, J. T., Schmitz, R., Taylor, C., Wilson, W. H., Wright, G. W., Zhao, E. Y., Marra, M. A., Morin, R. D., and Staudt, L. M. (2019) Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma, Blood, 133, 1313-1324, https://doi.org/10.1182/blood-2018-09-871418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lieber, M. R. (2016) Mechanisms of human lymphoid chromosomal translocations, Nat. Rev. Cancer, 16, 387-398, https://doi.org/10.1038/nrc.2016.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roos, W. P., and Kaina, B. (2006) DNA damage-induced cell death by apoptosis, Trends Mol. Med., 12, 440-450, https://doi.org/10.1016/j.molmed.2006.07.007.

    Article  CAS  PubMed  Google Scholar 

  13. Bhatia, S. (2013) Therapy-related myelodysplasia and acute myeloid leukemia, Semin. Oncol., 40, 666-675, https://doi.org/10.1053/j.seminoncol.2013.09.013.

    Article  CAS  PubMed  Google Scholar 

  14. Schoch, C., Kern, W., Schnittger, S., Hiddemann, W., and Haferlach, T. (2004) Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML, Leukemia, 18, 120-125, https://doi.org/10.1038/sj.leu.2403187.

    Article  CAS  PubMed  Google Scholar 

  15. Borthakur, G., and Estey, E. E. (2007) Therapy-related acute myelogenous leukemia and myelodysplastic syndrome, Curr. Oncol. Rep., 9, 373-377, https://doi.org/10.1007/s11912-007-0050-z.

    Article  CAS  PubMed  Google Scholar 

  16. Godley, L. A., and Larson, R. A. (2008) Therapy-related myeloid leukemia, Semin. Oncol., 35, 418-429, https://doi.org/10.1053/j.seminoncol.2008.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Østgård, L. S. G., Medeiros, B. C., Sengeløv, H., Nørgaard, M., Andersen, M. K., Dufva, I., Friis, L. S., Kjeldsen, E., Marcher, C. W., Preiss, B., Severinsen, M., and Nørgaard, J. M. (2015) Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: A national population-based cohort study, J. Clin. Oncol., 33, 3641-3649, https://doi.org/10.1200/JCO.2014.60.0890.

    Article  Google Scholar 

  18. Tiruneh, T., Enawgaw, B., and Shiferaw, E. (2020) Genetic pathway in the pathogenesis of therapy-related myeloid neoplasms: a literature review, Oncol. Ther., 8, 45-57, https://doi.org/10.1007/s40487-020-00111-7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pedersen-Bjergaard, J., Andersen, M. K., Christiansen, D. H., and Nerlov, C. (2002) Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia, Blood, 99, 1909-1912, https://doi.org/10.1182/blood.V99.6.1909.

    Article  CAS  PubMed  Google Scholar 

  20. Czader, M., and Orazi, A. (2009) Therapy-related myeloid neoplasms, Am. J. Clin. Pathol., 132, 410-425, https://doi.org/10.1309/AJCPD85MCOHHCOMQ.

    Article  CAS  PubMed  Google Scholar 

  21. Kayser, S., Döhner, K., Krauter, J., Köhne, C.-H., Horst, H. A., Held, G., von Lilienfeld-Toal, M., Wilhelm, S., Kündgen, A., Götze, K., Rummel, M., Nachbaur, D., Schlegelberger, B., Göhring, G., Späth, D., Morlok, C., Zucknick, M., Ganser, A., Döhner, H., Schlenk, R. F., and German-Austrian AMLSG (2011) The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML, Blood, 117, 2137-2145, https://doi.org/10.1182/blood-2010-08-301713.

    Article  CAS  PubMed  Google Scholar 

  22. McNerney, M. E., Godley, L. A., and Le Beau, M. M. (2017) Therapy-related myeloid neoplasms: When genetics and environment collide, Nat. Rev. Cancer, 17, 513-527, https://doi.org/10.1038/nrc.2017.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratain, M. J., and Rowley, J. D. (1992) Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: From the bedside to the target genes, Ann. Oncol., 3, 107-111, https://doi.org/10.1093/oxfordjournals.annonc.a058121.

    Article  CAS  PubMed  Google Scholar 

  24. Mauritzson, N., Albin, M., Rylander, L., Billström, R., Ahlgren, T., Mikoczy, Z., Björk, J., Strömberg, U., Nilsson, P., Mitelman, F., Hagmar, L., and Johansson, B. (2002) Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976-1993 and on 5098 unselected cases reported in the literature 1974-2001, Leukemia, 16, 2366-2378, https://doi.org/10.1038/sj.leu.2402713.

    Article  CAS  PubMed  Google Scholar 

  25. Hande, K. R. (1998) Etoposide: four decades of development of a topoisomerase ii inhibitor, Eur. J. Cancer, 34, 1514-1521, https://doi.org/10.1016/S0959-8049(98)00228-7.

    Article  CAS  PubMed  Google Scholar 

  26. King, L. S., and Sullivan, M. (1946) The similarity of the effect of podophyllin and colchicine and their use in the treatment of condylomata acuminata, Science, 104, 244-245, https://doi.org/10.1126/science.104.2698.244.

    Article  CAS  PubMed  Google Scholar 

  27. Greenspan, E. M. (1950) Effect of alpha-peltatin, beta-peltatin, and podophyllotoxin on lymphomas and other transplanted tumors, J. Natl. Cancer Inst., 10, 1295-1333.

    CAS  PubMed  Google Scholar 

  28. Baldwin, E. L., and Osheroff, N. (2005) Etoposide, topoisomerase II and cancer, Curr. Med. Chem. Anticancer Agents, 5, 363-372, https://doi.org/10.2174/1568011054222364.

    Article  CAS  PubMed  Google Scholar 

  29. Burden, D. A., and Osheroff, N. (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme, Biochim. Biophys. Acta, 1400, 139-154, https://doi.org/10.1016/S0167-4781(98)00132-8.

    Article  CAS  PubMed  Google Scholar 

  30. Wozniak, A. J., and Ross, W. E. (1983) DNA damage as a basis for 4′-demethylepipodophyllotoxin-9-(4,6-O-ethylidene-beta-D-glucopyranoside) (etoposide) cytotoxicity, Cancer Res., 43, 120-124.

    CAS  PubMed  Google Scholar 

  31. Watson, J. D., and Crick, F. H. C. (1953) Genetical implications of the structure of deoxyribonucleic acid, Nature, 171, 964-967, https://doi.org/10.1038/171964b0.

    Article  CAS  PubMed  Google Scholar 

  32. Delbrück, M. (1954) On the replication of desoxyribonucleic acid (DNA), Proc. Natl. Acad. Sci. USA, 40, 783-788, https://doi.org/10.1073/pnas.40.9.783.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKie, S. J., Neuman, K. C., and Maxwell, A. (2021) DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis, BioEssays, 43, e2000286, https://doi.org/10.1002/bies.202000286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Champoux, J. J. (2001) DNA topoisomerases: structure, function, and mechanism, Annu. Rev. Biochem., 70, 369-413, https://doi.org/10.1146/annurev.biochem.70.1.369.

    Article  CAS  PubMed  Google Scholar 

  35. Bliska, J. B., and Cozzarelli, N. R. (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo, J. Mol. Biol., 194, 205-218, https://doi.org/10.1016/0022-2836(87)90369-X.

    Article  CAS  PubMed  Google Scholar 

  36. Zechiedrich, E. L., and Cozzarelli, N. R. (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli, Genes Dev., 9, 2859-2869, https://doi.org/10.1101/gad.9.22.2859.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, L., Wold, M. S., Li, J. J., Kelly, T. J., and Liu, L. F. (1987) Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro, Proc. Natl. Acad. Sci. USA, 84, 950-954, https://doi.org/10.1073/pnas.84.4.950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buchenau, P., Saumweber, H., and Arndt-Jovin, D. J. (1993) Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy, J. Cell Sci., 104 (Pt 4), 1175-1185, https://doi.org/10.1242/jcs.104.4.1175.

    Article  PubMed  Google Scholar 

  39. Liu, L. F., Rowe, T. C., Yang, L., Tewey, K. M., and Chen, G. L. (1983) Cleavage of DNA by mammalian DNA topoisomerase II, J. Biol. Chem., 258, 15365-15370, https://doi.org/10.1016/S0021-9258(17)43815-4.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, B. H., Osheroff, N., and Berger, J. M. (2012) Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity, Nat. Struct. Mol. Biol., 19, 1147-1154, https://doi.org/10.1038/nsmb.2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nitiss, J. L. (2009) DNA topoisomerase II and its growing repertoire of biological functions, Nat. Rev. Cancer, 9, 327-337, https://doi.org/10.1038/nrc2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bates, A. D., Berger, J. M., and Maxwell, A. (2011) The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks, Nucleic Acids Res., 39, 6327-6339, https://doi.org/10.1093/nar/gkr258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bush, N. G., Evans-roberts, K., and Maxwell, A. (2015) Macromolecules DNA topoisomerases, EcoSal Plus, 6, 1-34, https://doi.org/10.1128/ecosalplus.ESP-0010-2014.

    Article  CAS  Google Scholar 

  44. Bax, B. D., Murshudov, G., Maxwell, A., and Germe, T. (2019) DNA topoisomerase inhibitors: trapping a DNA-cleaving machine in motion, J. Mol. Biol., 431, 3427-3449, https://doi.org/10.1016/j.jmb.2019.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vann, K. R., Oviatt, A. A., and Osheroff, N. (2021) Topoisomerase II poisons: converting essential enzymes into molecular scissors, Biochemistry, 60, 1630-1641, https://doi.org/10.1021/acs.biochem.1c00240.

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, M. J., and Osheroff, N. (1991) Effects of antineoplastic drugs on the post-strand-passage DNA cleavage/religation equilibrium of topoisomerase II, Biochemistry, 30, 1807-1813, https://doi.org/10.1021/bi00221a012.

    Article  CAS  PubMed  Google Scholar 

  47. Yan, H., Tammaro, M., and Liao, S. (2016) Collision of trapped topoisomerase 2 with transcription and replication: generation and repair of DNA double-strand breaks with 5′ adducts, Genes (Basel), 7, 32, https://doi.org/10.3390/genes7070032.

    Article  CAS  PubMed  Google Scholar 

  48. Riccio, A. A., Schellenberg, M. J., and Williams, R. S. (2020) Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution, Cell. Mol. Life Sci., 77, 81-91, https://doi.org/10.1007/s00018-019-03367-z.

    Article  CAS  PubMed  Google Scholar 

  49. Swan, R. L., Cowell, I. G., and Austin, C. A. (2022) Mechanisms to repair stalled topoisomerase II-DNA covalent complexes, Mol. Pharmacol., 101, 24-32, https://doi.org/10.1124/molpharm.121.000374.

    Article  CAS  PubMed  Google Scholar 

  50. Tomicic, M. T., and Kaina, B. (2013) Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors, Biochim. Biophys. Acta Rev. Cancer, 1835, 11-27, https://doi.org/10.1016/j.bbcan.2012.09.002.

    Article  CAS  Google Scholar 

  51. Montecucco, A., and Biamonti, G. (2007) Cellular response to etoposide treatment, Cancer Lett., 252, 9-18, https://doi.org/10.1016/j.canlet.2006.11.005.

    Article  CAS  PubMed  Google Scholar 

  52. Kantidze, O. L., and Razin, S. V. (2007) Chemotherapy-related secondary leukemias: a role for DNA repair by error-prone non-homologous end joining in topoisomerase II – induced chromosomal rearrangements, Gene, 391, 76-79, https://doi.org/10.1016/j.gene.2006.12.006.

    Article  CAS  PubMed  Google Scholar 

  53. Smith, K. A., Cowell, I. G., Zhang, Y., Sondka, Z., and Austin, C. A. (2014) The role of topoisomerase II beta on breakage and proximity of RUNX1 to partner alleles RUNX1T1 and EVI1, Genes Chromosomes Cancer, 53, 117-128, https://doi.org/10.1002/gcc.22124.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y., Strissel, P., Strick, R., Chen, J., Nucifora, G., Le Beau, M. M., Larson, R. A., and Rowley, J. D. (2002) Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia, Proc. Natl. Acad. Sci. USA, 99, 3070-3075, https://doi.org/10.1073/pnas.042702899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strissel, P. L., Strick, R., Tomek, R. J., Roe, B. A., Rowley, J. D., and Zeleznik-Le, N. J. (2000) DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis, Hum. Mol. Genet., 9, 1671-1679, https://doi.org/10.1093/hmg/9.11.1671.

    Article  CAS  PubMed  Google Scholar 

  56. Cowell, I. G., Sondka, Z., Smith, K., Lee, K. C., Manville, C. M., Sidorczuk-Lesthuruge, M., Rance, H. A., Padget, K., Jackson, G. H., Adachi, N., and Austin, C. A. (2012) Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity, Proc. Natl. Acad. Sci. USA, 109, 8989-8994, https://doi.org/10.1073/pnas.1204406109.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lomov, N. A., Viushkov, V. S., Ulianov, S. V., Gavrilov, A. A., Alexeyevsky, D. A., Artemov, A. V., Razin, S. V., and Rubtsov, M. A. (2022) Recurrent translocations in topoisomerase inhibitor-related leukemia are determined by the features of DNA breaks rather than by the proximity of the translocating genes, Int. J. Mol. Sci., 23, 9824, https://doi.org/10.3390/ijms23179824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rowley, J. D., and Olney, H. J. (2002) International Workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report, Genes Chromosomes Cancer, 33, 331-345, https://doi.org/10.1002/gcc.10040.

    Article  PubMed  Google Scholar 

  59. Pedersen-Bjergaard, J., Andersen, M. K., Andersen, M. T., and Christiansen, D. H. (2008) Genetics of therapy-related myelodysplasia and acute myeloid leukemia, Leukemia, 22, 240-248, https://doi.org/10.1038/sj.leu.2405078.

    Article  CAS  PubMed  Google Scholar 

  60. Imamura, T., Taga, T., Takagi, M., Kawasaki, H., Koh, K., Taki, T., Adachi, S., Manabe, A., and Ishida, Y. (2018) Nationwide survey of therapy-related leukemia in childhood in Japan, Int. J. Hematol., 108, 91-97, https://doi.org/10.1007/s12185-018-2439-x.

    Article  CAS  PubMed  Google Scholar 

  61. Gustafson, S. A., Lin, P., Chen, S. S., Chen, L., Abruzzo, L. V., Luthra, R., Medeiros, L. J., and Wang, S. A. (2009) Therapy-related acute myeloid leukemia with t(8;21) (q22;q22) shares many features with de novo acute myeloid leukemia with t(8;21)(q22;q22) but does not have a favorable outcome, Am. J. Clin. Pathol., 131, 647-655, https://doi.org/10.1309/AJCP5ETHDXO6NCGZ.

    Article  CAS  PubMed  Google Scholar 

  62. Slovak, M. L., Bedell, V., Popplewell, L., Arber, D. A., Schoch, C., and Slater, R. (2002) 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop, Genes Chromosomes Cancer, 33, 379-394, https://doi.org/10.1002/gcc.10042.

    Article  PubMed  Google Scholar 

  63. Sood, R., Kamikubo, Y., and Liu, P. (2017) Role of RUNX1 in hematological malignancies, Blood, 129, 2070-2082, https://doi.org/10.1182/blood-2016-10-687830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tanaka, K., Oshikawa, G., Akiyama, H., Ishida, S., Nagao, T., Yamamoto, M., and Miura, O. (2017) Acute myeloid leukemia with t(3;21)(q26.2;q22) developing following low-dose methotrexate therapy for rheumatoid arthritis and expressing two AML1/MDS1/EVI1 fusion proteins: A case report, Oncol. Lett., 14, 97-102, https://doi.org/10.3892/ol.2017.6151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sato, Y., Izumi, T., Kanamori, H., Davis, E. M., Miura, Y., Larson, R. A., Le Beau, M. M., Ozawa, K., and Rowley, J. D. (2002) t(1;3)(p36;p21) is a recurring therapy-related translocation, Genes Chromosomes Cancer, 34, 186-192, https://doi.org/10.1002/gcc.10055.

    Article  PubMed  Google Scholar 

  66. Duhoux, F. P., Ameye, G., Montano-Almendras, C. P., Bahloula, K., Mozziconacci, M. J., Laibe, S., Wlodarska, I., Michaux, L., Talmant, P., Richebourg, S., Lippert, E., Speleman, F., Herens, C., Struski, S., Raynaud, S., Auger, N., Nadal, N., Rack, K., Mugneret, F., Tigaud, I., Lafage, M., Taviaux, S., Roche-Lestienne, C., Latinne, D., Libouton, J. M., Demoulin, J. B., and Poirel, H. A. (2012) PRDM16 (1p36) translocations define a distinct entity of myeloid malignancies with poor prognosis but may also occur in lymphoid malignancies, Br. J. Haematol., 156, 76-88, https://doi.org/10.1111/j.1365-2141.2011.08918.x.

    Article  CAS  PubMed  Google Scholar 

  67. Andersen, M. K., Christiansen, D. H., Jensen, B. A., Ernst, P., Hauge, G., and Pedersen-Bjergaard, J. (2001) Therapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: report on two new cases and review of the literature since 1992, Br. J. Haematol., 114, 539-543, https://doi.org/10.1046/j.1365-2141.2001.03000.x.

    Article  CAS  PubMed  Google Scholar 

  68. Cowell, I. G., and Austin, C. A. (2012) Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents, J. Environ. Res. Public Health, 9, 2075-2091, https://doi.org/10.3390/ijerph9062075.

    Article  CAS  Google Scholar 

  69. Moorman, A. V., Hagemeijer, A., Charrin, C., Rieder, H., and Secker-Walker, L. M. (1998) Clinical profile of 53 patients, Leukemia, 12, 805-810, https://doi.org/10.1038/sj.leu.2401016.

    Article  CAS  PubMed  Google Scholar 

  70. Meyer, C., Burmeister, T., Strehl, S., Schneider, B., Hubert, D., Zach, O., Haas, O., Klingebiel, T., Dingermann, T., and Marschalek, R. (2007) Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia, Leukemia, 21, 588-590, https://doi.org/10.1038/sj.leu.2404542.

    Article  CAS  PubMed  Google Scholar 

  71. Lavau, C., Du, C., Thirman, M., and Zeleznik-Le, N. (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia, EMBO J., 19, 4655-4664, https://doi.org/10.1093/emboj/19.17.4655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoo, B. J., Nam, M. H., Sung, H. J., Lim, C. S., Lee, C. K., Cho, Y. J., Lee, K. N., and Yoon, S. Y. (2011) A case of therapy-related acute lymphoblastic leukemia with t(11;19) (q23;p13.3) and MLL/MLLT1 gene rearrangement, Korean J. Lab. Med., 31, 13-17, https://doi.org/10.3343/kjlm.2011.31.1.13.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xie, W., Tang, G., Wang, E., Kim, Y., Cloe, A., Shen, Q., Zhou, Y., Garcia-Manero, G., Loghavi, S., Hu, A. Y., Wang, S., Bueso-Ramos, C. E., Kantarjian, H. M., Medeiros, L. J., and Hu, S. (2020) t(11;16)(q23;p13)/KMT2A-CREBBP in hematologic malignancies: presumptive evidence of myelodysplasia or therapy-related neoplasm? Ann. Hematol., 99, 487-500, https://doi.org/10.1007/s00277-020-03909-7.

    Article  CAS  PubMed  Google Scholar 

  74. Soutoglou, E., Dorn, J. F., Sengupta, K., Jasin, M., Nussenzweig, A., Ried, T., Danuser, G., and Misteli, T. (2007) Positional stability of single double-strand breaks in mammalian cells, Nat. Cell Biol., 9, 675-682, https://doi.org/10.1038/ncb1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y., McCord, R. P., Ho, Y.-J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W., and Dekker, J. (2012) Chromosomal translocations are guided by the spatial organization of the genome, Cell, 148, 908-921, https://doi.org/10.1016/j.cell.2012.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Engreitz, J. M., Agarwala, V., and Mirny, L. A. (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease, PLoS One, 7, e44196, https://doi.org/10.1371/journal.pone.0044196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sathitruangsak, C., Righolt, C. H., Klewes, L., Tung Chang, D., Kotb, R., and Mai, S. (2017) Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma, Int. J. Cancer, 140, 400-410, https://doi.org/10.1002/ijc.30461.

    Article  CAS  PubMed  Google Scholar 

  78. Falk, M., Lukasova, E., Gabrielova, B., Ondrej, V., and Kozubek, S. (2007) Chromatin dynamics during DSB repair, Biochim. Biophys. Acta, 1773, 1534-1545, https://doi.org/10.1016/j.bbamcr.2007.07.002.

    Article  CAS  PubMed  Google Scholar 

  79. Aymard, F., Aguirrebengoa, M., Guillou, E., Javierre, B. M., Bugler, B., Arnould, C., Rocher, V., Iacovoni, J. S., Biernacka, A., Skrzypczak, M., Ginalski, K., Rowicka, M., Fraser, P., and Legube, G. (2017) Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes, Nat. Struct. Mol. Biol., 24, 353-361, https://doi.org/10.1038/nsmb.3387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, H., Nakamura, M., Abbott, T. R., Zhao, D., Luo, K., Yu, C., Nguyen, C. M., Lo, A., Daley, T. P., La Russa, M., Liu, Y., and Qi, L. S. (2019) CRISPR-mediated live imaging of genome editing and transcription, Science, 365, 1301-1305, https://doi.org/10.1126/science.aax7852.

    Article  CAS  PubMed  Google Scholar 

  81. Ramsden, D. A., and Nussenzweig, A. (2021) Mechanisms driving chromosomal translocations: lost in time and space, Oncogene, 40, 4263-4270, https://doi.org/10.1038/s41388-021-01856-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660-664, https://doi.org/10.1126/science.1237150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kantidze, O. L., and Razin, S. V. (2009) Chromatin loops, illegitimate recombination, and genome evolution, BioEssays, 31, 278-286, https://doi.org/10.1002/bies.200800165.

    Article  CAS  PubMed  Google Scholar 

  84. Canela, A., Maman, Y., Huang, S. N., Wutz, G., Tang, W., Zagnoli-Vieira, G., Callen, E., Wong, N., Day, A., Peters, J. M., Caldecott, K. W., Pommier, Y., and Nussenzweig, A. (2019) Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity, Mol. Cell, 75, 252-266.e8, https://doi.org/10.1016/j.molcel.2019.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Graham, T. G. W., Walter, J. C., and Loparo, J. J. (2016) Two-stage synapsis of DNA ends during non-homologous end joining, Mol. Cell, 61, 850-858, https://doi.org/10.1016/j.molcel.2016.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chaplin, A. K., Hardwick, S. W., Stavridi, A. K., Buehl, C. J., Goff, N. J., Ropars, V., Liang, S., De Oliveira, T. M., Chirgadze, D. Y., Meek, K., Charbonnier, J. B., and Blundell, T. L. (2021) Cryo-EM of NHEJ supercomplexes provides insights into DNA repair, Mol. Cell, 81, 3400-3409.e3, https://doi.org/10.1016/j.molcel.2021.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. DeFazio, L. G., Stansel, R. M., Griffith, J. D., and Chu, G. (2002) Synapsis of DNA ends by DNA-dependent protein kinase, EMBO J., 21, 3192-3200, https://doi.org/10.1093/emboj/cdf299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shmakova, A., Lomov, N., Viushkov, V., Tsfasman, T., Kozhevnikova, Y., Sokolova, D., Pokrovsky, V., Syrkina, M., Germini, D., Rubtsov, M., and Vassetzky, Y. (2023) Cell models with inducible oncogenic translocations allow to evaluate the potential of drugs to favor secondary translocations, Cancer Commun., 43, 154-158, https://doi.org/10.1002/cac2.12370.

    Article  Google Scholar 

  89. Krawczyk, P. M., Borovski, T., Stap, J., Cijsouw, T., ten Cate, R., Medema, J. P., Kanaar, R., Franken, N. A. P., and Aten, J. A. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks, J. Cell Sci., 125, 2127-2133, https://doi.org/10.1242/jcs.089847.

    Article  CAS  PubMed  Google Scholar 

  90. Glukhov, S. I., Rubtsov, M. A., Alexeyevsky, D. A., Alexeevski, A. V., Razin, S. V., and Iarovaia, O. V. (2013) The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide, PLoS One, 8, e75871, https://doi.org/10.1371/journal.pone.0075871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nowell, P. C. (1976) The clonal evolution of tumor cell populations, Science, 194, 23-28, https://doi.org/10.1126/science.959840.

    Article  CAS  PubMed  Google Scholar 

  92. Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M. (1991) (8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1, Proc. Natl. Acad. Sci. USA, 8, 10431-10434, https://doi.org/10.1073/pnas.88.23.10431.

    Article  Google Scholar 

  93. Roulston, D., Espinosa, R., Nucifora, G., Larson, R. A., Le Beau, M. M., and Rowley, J. D. (1998) CBFA2(AML1) Translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy, Blood, 92, 2879-2885, https://doi.org/10.1182/blood.V92.8.2879.

    Article  CAS  PubMed  Google Scholar 

  94. Pedersen-Bjergaard, J., and Rowley, J. D. (1994) The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation, Blood, 83, 2780-2786, https://doi.org/10.1182/blood.V83.10.2780.2780.

    Article  CAS  PubMed  Google Scholar 

  95. De Braekeleer, E., Ferec, C., and De Braekeleer, M. (2009) RUNX1 translocations in malignant hemopathies, Anticancer Res., 29, 1031-1038.

    CAS  PubMed  Google Scholar 

  96. Tahirov, T. H., and Bushweller, J. (2017) Structure and biophysics of CBFβ/RUNX and its translocation products, Adv. Exp. Med. Biol., 962, 21-31, https://doi.org/10.1007/978-981-10-3233-2_2.

    Article  CAS  PubMed  Google Scholar 

  97. Lam, K., and Zhang, D.-E. (2012) RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis, Front. Biosci. Landmark Ed., 17, 1120-1139, https://doi.org/10.2741/3977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ichikawa, M., Yoshimi, A., Nakagawa, M., Nishimoto, N., Watanabe-Okochi, N., and Kurokawa, M. (2013) A role for RUNX1 in hematopoiesis and myeloid leukemia, Int. J. Hematol., 97, 726-734, https://doi.org/10.1007/s12185-013-1347-3.

    Article  CAS  PubMed  Google Scholar 

  99. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., and Speck, N. A. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter, Nature, 457, 887-891, https://doi.org/10.1038/nature07619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ottersbach, K. (2019) Endothelial-to-haematopoietic transition: An update on the process of making blood, Biochem. Soc. Trans., 47, 591-601, https://doi.org/10.1042/BST20180320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., and Speck, N. A. (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis, Proc. Natl. Acad. Sci. USA, 93, 3444-3449, https://doi.org/10.1073/pnas.93.8.3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Growney, J. D., Shigematsu, H., Li, Z., Lee, B. H., Adelsperger, J., Rowan, R., Curley, D. P., Kutok, J. L., Akashi, K., Williams, I. R., Speck, N. A., and Gilliland, D. G. (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype, Blood, 106, 494-504, https://doi.org/10.1182/blood-2004-08-3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ichikawa, M., Goyama, S., Asai, T., Kawazu, M., Nakagawa, M., Takeshita, M., Chiba, S., Ogawa, S., and Kurokawa, M. (2008) AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoIesis, J. Immunol., 180, 4402-4408, https://doi.org/10.4049/jimmunol.180.7.4402.

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka, Y., Joshi, A., Wilson, N. K., Kinston, S., Nishikawa, S., and Göttgens, B. (2012) The transcriptional programme controlled by Runx1 during early embryonic blood development, Dev. Biol., 366, 404-419, https://doi.org/10.1016/j.ydbio.2012.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamagata, T., Maki, K., and Mitani, K. (2005) Runx1/AML1 in normal and abnormal hematopoiesis, Int. J. Hematol., 82, 1-8, https://doi.org/10.1532/IJH97.05075.

    Article  CAS  PubMed  Google Scholar 

  106. Elagib, K. E., Racke, F. K., Mogass, M., Khetawat, R., Delehanty, L. L., and Goldfarb, A. N. (2003) RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation, Blood, 101, 4333-4341, https://doi.org/10.1182/blood-2002-09-2708.

    Article  CAS  PubMed  Google Scholar 

  107. Kim, W. Y., Sieweke, M., Ogawa, E., Wee, H. J., Englmeier, U., Graf, T., and Yoshiaki, I. (1999) Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains, EMBO J., 18, 169-1620, https://doi.org/10.1093/emboj/18.6.1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, D. E., Hetherington, C. J., Meyers, S., Rhoades, K. L., Larson, C. J., Chen, H. M., Hiebert, S. W., and Tenen, D. G. (1996) CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter, Mol. Cell. Biol., 16, 1231-1240, https://doi.org/10.1128/MCB.16.3.1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kitabayashi, I., Yokoyama, A., Shimizu, K., and Ohki, M. (1998) Interaction and functional cooperation of the leukemia- associated factors AML1 and p300 in myeloid cell differentiation, EMBO J., 17, 2994-3004, https://doi.org/10.1093/emboj/17.11.2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y., and Ito, Y. (1999) A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator, EMBO J., 18, 2551-2562, https://doi.org/10.1093/emboj/18.9.2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Segrelles, C., Paramio, J. M., and Lorz, C. (2018) The transcriptional co-activator YAP: A new player in head and neck cancer, Oral Oncol., 86, 25-32, https://doi.org/10.1016/j.oraloncology.2018.08.020.

    Article  CAS  PubMed  Google Scholar 

  112. Riddell, A., McBride, M., Braun, T., Nicklin, S. A., Cameron, E., Loughrey, C. M., and Martin, T. P. (2020) RUNX1: an emerging therapeutic target for cardiovascular disease, Cardiovasc. Res., 116, 1410-1423, https://doi.org/10.1093/cvr/cvaa034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kellaway, S. G., Coleman, D. J. L., Cockerill, P. N., Raghavan, M., and Bonifer, C. (2022) Molecular basis of hematological disease caused by inherited or acquired RUNX1 mutations, Exp. Hematol., 111, 1-12, https://doi.org/10.1016/j.exphem.2022.03.009.

    Article  CAS  PubMed  Google Scholar 

  114. Lutterbach, B., Westendorf, J. J., Linggi, B., Isaac, S., Seto, E., and Hiebert, S. W. (2000) A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia, J. Biol. Chem., 275, 651-656, https://doi.org/10.1074/jbc.275.1.651.

    Article  CAS  PubMed  Google Scholar 

  115. Imai, Y., Kurokawa, M., Yamaguchi, Y., Izutsu, K., Nitta, E., Mitani, K., Satake, M., Noda, T., Ito, Y., and Hirai, H. (2004) The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1, Mol. Cell. Biol., 24, 1033-1043, https://doi.org/10.1128/MCB.24.3.1033-1043.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seo, W., Tanaka, H., Miyamoto, C., Levanon, D., Groner, Y., and Taniuchi, I. (2012) Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development, Immunol. Cell Biol., 90, 827-830, https://doi.org/10.1038/icb.2012.6.

    Article  CAS  PubMed  Google Scholar 

  117. Alkadi, H., McKellar, D., Zhen, T., Karpova, T., Garrett, L. J., Gao, Y., Alsadhan, A. A., Kwon, E. M., Greene, J. J., Ball, D. A., Cheng, L., Sorrell, A. D., and Liu, P. P. (2018) The VWRPY domain is essential for RUNX1 function in hematopoietic progenitor cell maturation and megakaryocyte differentiation, Blood, 132 (Supplement 1), 1319, https://doi.org/10.1182/blood-2018-99-113400.

    Article  Google Scholar 

  118. Huret, J. L., Ahmad, M., Arsaban, M., Bernheim, A., Cigna, J., Desangles, F., Guignard, J. C., Jacquemot-Perbal, M. C., Labarussias, M., Leberre, V., Malo, A., Morel-Pair, C., Mossafa, H., Potier, J. C., Texier, G., Vigui, F., Wan-Senon, S. Y. C., Zasadzinski, A., and Dessen, P. (2013) Atlas of genetics and cytogenetics in oncology and haematology in 2013, Nucleic Acids Res., 41, D920-D924, https://doi.org/10.1093/nar/gks1082.

    Article  CAS  PubMed  Google Scholar 

  119. Peterson, L. F., and Zhang, D. E. (2004) The 8;21 translocation in leukemogenesis, Oncogene, 23, 4255-4262, https://doi.org/10.1038/sj.onc.1207727.

    Article  CAS  PubMed  Google Scholar 

  120. Davis, J. N., McGhee, L., and Meyers, S. (2003) The ETO (MTG8) gene family, Gene, 303, 1-10, https://doi.org/10.1016/S0378-1119(02)01172-1.

    Article  CAS  PubMed  Google Scholar 

  121. Hiebert, S. W., Reed-Inderbitzin, E. F., Amann, J., Irvin, B., Durst, K., and Linggi, B. (2003) The t(8;21) fusion protein contacts co-repressors and histone deacetylases to repress the transcription of the p14ARF tumor suppressor, Blood Cells Mol. Dis., 30, 177-183, https://doi.org/10.1016/S1079-9796(03)00021-4.

    Article  CAS  PubMed  Google Scholar 

  122. Hayashi, Y., Harada, Y., and Harada, H. (2022) Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective, Leukemia, 36, 1203-1214, https://doi.org/10.1038/s41375-022-01548-7.

    Article  CAS  PubMed  Google Scholar 

  123. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., Von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., Von Heijne, G., Nielsen, J., and Pontén, F. (2015) Tissue-based map of the human proteome, Science, 347, 1260419, https://doi.org/10.1126/science.1260419.

    Article  CAS  PubMed  Google Scholar 

  124. Perry, C., Eldor, A., and Soreq, H. (2002) Runx1/AML1 in leukemia: disrupted association with diverse protein partners, Leuk. Res., 26, 221-228, https://doi.org/10.1016/S0145-2126(01)00128-X.

    Article  CAS  PubMed  Google Scholar 

  125. Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P. G., and Lazar, M. A. (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO, Mol. Cell. Biol., 18, 7185-7191, https://doi.org/10.1128/MCB.18.12.7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lutterbach, B., Westendorf, J. J., Linggi, B., Patten, A., Moniwa, M., Davie, J. R., Huynh, K. D., Bardwell, V. J., Lavinsky, R. M., Rosenfeld, M. G., Glass, C., Seto, E., and Hiebert, S. W. (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors, Mol. Cell. Biol., 18, 7176-7184, https://doi.org/10.1128/MCB.18.12.7176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, L., Gural, A., Sun, X. J., Zhao, X., Perna, F., Huang, G., Hatlen, M. A., Vu, L., Liu, F., Xu, H., Asai, T., Xu, H., Deblasio, T., Menendez, S., Voza, F., Jiang, Y., Cole, P. A., Zhang, J., Melnick, A., Roeder, R. G., and Nimer, S. D. (2011) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation, Science, 333, 765-769, https://doi.org/10.1126/science.1201662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Otálora-Otálora, B. A., Henríquez, B., López-Kleine, L., and Rojas, A. (2019) RUNX family: oncogenes or tumor suppressors (review), Oncol. Rep., 42, 3-19, https://doi.org/10.3892/or.2019.7149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rejeski, K., Duque-Afonso, J., and Lübbert, M. (2021) AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms, Oncogene, 40, 5665-5676, https://doi.org/10.1038/s41388-021-01952-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., Lotem, J., Tanay, A., and Groner, Y. (2013) Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1, Cell Rep., 4, 1131-1143, https://doi.org/10.1016/j.celrep.2013.08.020.

    Article  CAS  PubMed  Google Scholar 

  131. Van der Kouwe, E., and Staber, P. B. (2019) RUNX1-ETO: Attacking the epigenome for genomic instable Leukemia, Int. J. Mol. Sci., 20, 350, https://doi.org/10.3390/ijms20020350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ptasinska, A., Assi, S. A., Mannari, D., James, S. R., Williamson, D., Dunne, J., Hoogenkamp, M., Wu, M., Care, M., McNeill, H., Cauchy, P., Cullen, M., Tooze, R. M., Tenen, D. G., Young, B. D., Cockerill, P. N., Westhead, D. R., Heidenreich, O., and Bonifer, C. (2012) Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding, Leukemia, 26, 1829-1841, https://doi.org/10.1038/leu.2012.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan, Y., Zhou, L., Miyamoto, T., Iwasaki, H., Harakawa, N., Hetherington, C. J., Burel, S. A., Lagasse, E., Weissman, I. L., Akashi, K., and Zhang, D.-E. (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations, Proc. Natl. Acad. Sci. USA, 98, 10398-10403, https://doi.org/10.1073/pnas.171321298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Higuchi, M., O’Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E. J., and Downing, J. R. (2002) Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia, Cancer Cell, 1, 63-74, https://doi.org/10.1016/S1535-6108(02)00016-8.

    Article  CAS  PubMed  Google Scholar 

  135. Kozu, T., Fukuyama, T., Yamami, T., Akagi, K., and Kaneko, Y. (2005) MYND-less splice variants of AML1-MTG8 (RUNX1=CBFA2T1) are expressed in leukemia with t(8;21), Genes Chromosomes Cancer, 43, 45-53, https://doi.org/10.1002/gcc.20165.

    Article  CAS  PubMed  Google Scholar 

  136. Yan, M., Kanbe, E., Peterson, L. F., Boyapati, A., Miao, Y., Wang, Y., Chen, I. M., Chen, Z., Rowley, J. D., Willman, C. L., and Zhang, D. E. (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis, Nat. Med., 12, 945-949, https://doi.org/10.1038/nm1443.

    Article  CAS  PubMed  Google Scholar 

  137. Slany, R. K. (2009) The molecular biology of mixed lineage leukemia, Haematologica, 94, 984-993, https://doi.org/10.3324/haematol.2008.002436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mirro, J., Zipf, T. F., Pui, C. H., Kitchingman, G., Williams, D., Melvin, S., Murphy, S. B., and Stass, S. (1985) Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance, Blood, 66, 1115-1123, https://doi.org/10.1182/blood.V66.5.1115.bloodjournal6651115.

    Article  CAS  PubMed  Google Scholar 

  139. Mirro, J., Kitchingman, G. R., Williams, D. L., Murphy, S. B., Zipf, T. F., and Stass, S. A. (1986) Mixed lineage leukemia: the implications for hematopoietic differentiation, Blood, 68, 597-599, https://doi.org/10.1182/blood.V68.2.597.597.

    Article  CAS  PubMed  Google Scholar 

  140. Ziemin-Van Der Poel, S., Mccabe, N. R., Gill, H. J., Espinosa, R., Patel, Y., Harden, A., Rubinelli, P., Smith, S. D., Lebeau, M. M., Rowley, I. D., and Diaz, M. O. (1991) Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias, Proc. Natl. Acad. Sci. USA, 88, 10735-10739, https://doi.org/10.1073/pnas.88.23.10735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Djabali, M., Selleri, L., Parry, P., Bower, M., Young, B. D., and Evans, G. A. (1992) A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias, Nat. Genet., 2, 113-118, https://doi.org/10.1038/ng1092-113.

    Article  CAS  PubMed  Google Scholar 

  142. Marschalek, R. (2011) Mechanisms of leukemogenesis by MLL fusion proteins, Br. J. Haematol., 152, 141-154, https://doi.org/10.1111/j.1365-2141.2010.08459.x.

    Article  CAS  PubMed  Google Scholar 

  143. Super, H. J. G., McCabe, N. R., Thirman, M. J., Larson, R. A., Le Beau, M. M., Pedersen-Bjergaard, J., Philip, P., Diaz, M. O., and Rowley, J. D. (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II, Blood, 82, 3705-3711, https://doi.org/10.1182/blood.V82.12.3705.3705.

    Article  CAS  PubMed  Google Scholar 

  144. Felix, C. A. (1998) Secondary leukemias induced by topoisomerase-targeted drugs, Biochim. Biophys. Acta, 1400, 233-255, https://doi.org/10.1016/S0167-4781(98)00139-0.

    Article  CAS  PubMed  Google Scholar 

  145. Rao, R. C., and Dou, Y. (2015) Hijacked in cancer: The KMT2 (MLL) family of methyltransferases, Nat. Rev. Cancer, 15, 334-346, https://doi.org/10.1038/nrc3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Borkhardt, A., Wuchter, C., Viehmann, S., Pils, S., Teigler-Schlegel, A., Stanulla, M., Zimmermann, M., Ludwig, W. D., Janka-Schaub, G., Schrappe, M., and Harbott, J. (2002) Infant acute lymphoblastic leukemia – combined cytogenetic, immonophenotypical and molecular analysis of 77 cases, Leukemia, 16, 1685-1690, https://doi.org/10.1038/sj.leu.2402595.

    Article  CAS  PubMed  Google Scholar 

  147. Pieters, R., Schrappe, M., De Lorenzo, P., Hann, I., De Rossi, G., Felice, M., Hovi, L., LeBlanc, T., Szczepanski, T., Ferster, A., Janka, G., Rubnitz, J., Silverman, L., Stary, J., Campbell, M., Li, C. K., Mann, G., Suppiah, R., Biondi, A., Vora, A., and Valsecchi, M. G. (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial, Lancet, 370, 240-250, https://doi.org/10.1016/S0140-6736(07)61126-X.

    Article  CAS  PubMed  Google Scholar 

  148. Creutzig, U., Zimmermann, M., Dworzak, M., Bourquin, J.-P., von Neuhoff, C., Sander, A., Stary, J., and Reinhardt, D. (2012) Additional prognostic impact of specific sites of extramedullary leukemia in pediatric AML with MLL-rearrangements but not in core-binding factor (CBF) AML, Blood, 120, 2621, https://doi.org/10.1182/blood.V120.21.2621.2621.

    Article  Google Scholar 

  149. Marschalek, R. (2016) Systematic classification of mixed-lineage leukemia fusion partners predicts additional cancer pathways, Ann. Lab. Med., 36, 85-100, https://doi.org/10.3343/alm.2016.36.2.85.

    Article  CAS  PubMed  Google Scholar 

  150. Liu, H., Cheng, E. H. Y., and Hsieh, J. J. D. (2009) MLL fusions: pathways to leukemia, Cancer Biol. Ther., 8, 1204-1211, https://doi.org/10.4161/cbt.8.13.8924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guenther, M. G., Jenner, R. G., Chevalier, B., Nakamura, T., Croce, C. M., Canaani, E., and Young, R. A. (2005) Global and Hox-specific roles for the MLL1 methyltransferase, Proc. Natl. Acad. Sci. USA, 102, 8603-8608, https://doi.org/10.1073/pnas.0503072102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ayton, P. M., and Cleary, M. L. (2003) Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9, Genes Dev., 17, 2298-2307, https://doi.org/10.1101/gad.1111603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, P., Lin, C., Smith, E. R., Guo, H., Sanderson, B. W., Wu, M., Gogol, M., Alexander, T., Seidel, C., Wiedemann, L. M., Ge, K., Krumlauf, R., and Shilatifard, A. (2009) Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II, Mol. Cell. Biol., 29, 6074-6085, https://doi.org/10.1128/MCB.00924-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Artinger, E. L., Mishra, B. P., Zaffuto, K. M., Li, B. E., Chung, E. K. Y., Moore, A. W., Chen, Y., Cheng, C., and Ernst, P. (2013) An MLL-dependent network sustains hematopoiesis, Proc. Natl. Acad. Sci. USA, 110, 12000-12005, https://doi.org/10.1073/pnas.1301278110.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. J., and Korsmeyer, S. J. (1995) Altered Hox expression and segmental identity in Mll-mutant mice, Nature, 378, 505-508, https://doi.org/10.1038/378505a0.

    Article  CAS  PubMed  Google Scholar 

  156. Yagi, H., Deguchi, K., Aono, A., Tani, Y., Kishimoto, T., and Komori, T. (1998) Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice, Blood, 92, 108-117, https://doi.org/10.1182/blood.V92.1.108.413k11_108_117.

    Article  CAS  PubMed  Google Scholar 

  157. Ernst, P., Fisher, J. K., Avery, W., Wade, S., Foy, D., and Korsmeyer, S. J. (2004) Definitive hematopoiesis requires the mixed-lineage leukemia gene, Dev. Cell, 6, 437-443, https://doi.org/10.1016/S1534-5807(04)00061-9.

    Article  CAS  PubMed  Google Scholar 

  158. McMahon, K. A., Hiew, S. Y. L., Hadjur, S., Veiga-Fernandes, H., Menzel, U., Price, A. J., Kioussis, D., Williams, O., and Brady, H. J. M. (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal, Cell Stem Cell, 1, 338-345, https://doi.org/10.1016/j.stem.2007.07.002.

    Article  CAS  PubMed  Google Scholar 

  159. García-Alai, M. M., Allen, M. D., Joerger, A. C., and Bycroft, M. (2010) The structure of the FYR domain of transforming growth factor beta regulator 1, Protein Sci., 19, 1432-1438, https://doi.org/10.1002/pro.404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Birke, M., Schreiner, S., García-Cuéllar, M.-P., Mahr, K., Titgemeyer, F., and Slany, R. K. (2002) The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation, Nucleic Acids Res., 30, 958-965, https://doi.org/10.1093/nar/30.4.958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Allen, M. D., Grummitt, C. G., Hilcenko, C., Min, S. Y., Tonkin, L. M., Johnson, C. M., Freund, S. M., Bycroft, M., and Warren, A. J. (2006) Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase, EMBO J., 25, 4503-4512, https://doi.org/10.1038/sj.emboj.7601340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Risner, L. E., Kuntimaddi, A., Lokken, A. A., Achille, N. J., Birch, N. W., Schoenfelt, K., Bushweller, J. H., and Zeleznik-Le, N. J. (2013) Functional specificity of CpG DNA-binding CXXC domains in mixed lineage leukemia, J. Biol. Chem., 288, 29901-29910, https://doi.org/10.1074/jbc.M113.474858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Muntean, A. G., Tan, J., Sitwala, K., Huang, Y., Bronstein, J., Connelly, J. A., Basrur, V., Elenitoba-Johnson, K. S. J., and Hess, J. L. (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis, Cancer Cell, 17, 609-621, https://doi.org/10.1016/j.ccr.2010.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, Z., Song, J., Milne, T. A., Wang, G. G., Li, H., Allis, C. D., and Patel, D. J. (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression, Cell, 141, 1183-1194, https://doi.org/10.1016/j.cell.2010.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chang, P. Y., Hom, R. A., Musselman, C. A., Zhu, L., Kuo, A., Gozani, O., Kutateladze, T. G., and Cleary, M. L. (2010) Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription, J. Mol. Biol., 400, 137-144, https://doi.org/10.1016/j.jmb.2010.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Roloff, T. C., Ropers, H. H., and Nuber, U. A. (2003) Comparative study of methyl-CpG-binding domain proteins, BMC Genomics, 4, 1, https://doi.org/10.1186/1471-2164-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Yokoyama, A., and Cleary, M. L. (2008) Menin critically links MLL protein with LEDGF on cancer-associated target genes, Cancer Cell, 14, 36-46, https://doi.org/10.1016/j.ccr.2008.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hughes, C. M., Rozenblatt-Rosen, O., Milne, T. A., Copeland, T. D., Levine, S. S., Lee, J. C., Hayes, D. N., Shanmugam, K. S., Bhattacharjee, A., Biondi, C. A., Kay, G. F., Hayward, N. K., Hess, J. L., and Meyerson, M. (2004) Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus, Mol. Cell, 13, 587-597, https://doi.org/10.1016/S1097-2765(04)00081-4.

    Article  CAS  PubMed  Google Scholar 

  169. Slany, R. K. (2016) The molecular mechanics of mixed lineage leukemia, Oncogene, 35, 5215-5223, https://doi.org/10.1038/onc.2016.30.

    Article  CAS  PubMed  Google Scholar 

  170. Del Rizzo, P. A., and Trievel, R. C. (2011) Substrate and product specificities of SET domain methyltransferases, Epigenetics, 6, 1059-1067, https://doi.org/10.4161/epi.6.9.16069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dou, Y., Milne, T. A., Ruthenburg, A. J., Lee, S., Lee, J. W., Verdine, G. L., Allis, C. D., and Roeder, R. G. (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components, Nat. Struct. Mol. Biol., 13, 713-719, https://doi.org/10.1038/nsmb1128.

    Article  CAS  PubMed  Google Scholar 

  172. Patel, A., Dharmarajan, V., Vought, V. E., and Cosgrove, M. S. (2009) On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex, J. Biol. Chem., 284, 24242-24256, https://doi.org/10.1074/jbc.M109.014498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, Y., Han, J., Zhang, Y., Cao, F., Liu, Z., Li, S., Wu, J., Hu, C., Wang, Y., Shuai, J., Chen, J., Cao, L., Li, D., Shi, P., Tian, C., Zhang, J., Dou, Y., Li, G., Chen, Y., and Lei, M. (2016) Structural basis for activity regulation of MLL family methyltransferases, Nature, 530, 447-452, https://doi.org/10.1038/nature16952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lloyd, N. R., and Wuttke, D. S. (2021) Cyp33 binds AU-rich RNA motifs via an extended interface that competitively disrupts the gene repressive Cyp33-MLL1 interaction in vitro, PLoS One, 16, 1-18, https://doi.org/10.1371/journal.pone.0237956.

    Article  CAS  Google Scholar 

  175. Fair, K., Anderson, M., Bulanova, E., Mi, H., Tropschug, M., and Diaz, M. O. (2001) Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells, Mol. Cell. Biol., 21, 3589-3597, https://doi.org/10.1128/MCB.21.10.3589-3597.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xia, Z. B., Anderson, M., Diaz, M. O., and Zeleznik-Le, N. J. (2003) MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein, Proc. Natl. Acad. Sci. USA, 100, 8342-8347, https://doi.org/10.1073/pnas.1436338100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Grow, E. J., and Wysocka, J. (2010) Flipping MLL1’s switch one proline at a time, Cell, 141, 1108-1110, https://doi.org/10.1016/j.cell.2010.06.013.

    Article  CAS  PubMed  Google Scholar 

  178. Sha, L., Ayoub, A., Cho, U. S., and Dou, Y. (2020) Insights on the regulation of the MLL/SET1 family histone methyltransferases, Biochim. Biophys. Acta Gene Regul. Mech., 1863, 194561, https://doi.org/10.1016/j.bbagrm.2020.194561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen, J., Santillan, D. A., Koonce, M., Wei, W., Luo, R., Thirman, M. J., Zeleznik-Le, N. J., and Diaz, M. O. (2008) Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization, Cancer Res., 68, 6199-6207, https://doi.org/10.1158/0008-5472.CAN-07-6514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chan, A. K. N., and Chen, C. W. (2019) Rewiring the epigenetic networks in MLL-rearranged leukemias: Epigenetic dysregulation and pharmacological interventions, Front. Cell Dev. Biol., 7, 1-15, https://doi.org/10.3389/fcell.2019.00081.

    Article  Google Scholar 

  181. Han, Q. L., Zhang, X. L., Ren, P. X., Mei, L. H., Lin, W. H., Wang, L., Cao, Y., Li, K., and Bai, F. (2022) Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma, Acta Pharmacol. Sin., 44, 877-887, https://doi.org/10.1038/s41401-022-00999-z.

    Article  CAS  PubMed  Google Scholar 

  182. Wright, R. L., and Vaughan, A. T. M. (2014) A systematic description of MLL fusion gene formation, Crit. Rev. Oncol. Hematol., 91, 283-291, https://doi.org/10.1016/j.critrevonc.2014.03.004.

    Article  PubMed  Google Scholar 

  183. Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., Liu, H. C., Mahfouz, R., Raimondi, S. C., Lenny, N., Patel, A., and Downing, J. R. (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling, Blood, 102, 2951-2959, https://doi.org/10.1182/blood-2003-01-0338.

    Article  CAS  PubMed  Google Scholar 

  184. Ferrando, A. A., Armstrong, S. A., Neuberg, D. S., Sallan, S. E., Silverman, L. B., Korsmeyer, S. J., and Look, A. T. (2003) Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation, Blood, 102, 262-268, https://doi.org/10.1182/blood-2002-10-3221.

    Article  CAS  PubMed  Google Scholar 

  185. Lin, C., Smith, E. R., Takahashi, H., Lai, K. C., Martin-Brown, S., Florens, L., Washburn, M. P., Conaway, J. W., Conaway, R. C., and Shilatifard, A. (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia, Mol. Cell, 37, 429-437, https://doi.org/10.1016/j.molcel.2010.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I., and Cleary, M. L. (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription, Cancer Cell, 17, 198-212, https://doi.org/10.1016/j.ccr.2009.12.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bitoun, E., Oliver, P. L., and Davies, K. E. (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling, Hum. Mol. Genet., 16, 92-106, https://doi.org/10.1093/hmg/ddl444.

    Article  CAS  PubMed  Google Scholar 

  188. Mueller, D., García-Cuéllar, M. P., Bach, C., Buhl, S., Maethner, E., and Slany, R. K. (2009) Misguided transcriptional elongation causes mixed lineage leukemia, PLoS Biol., 7, e1000249, https://doi.org/10.1371/journal.pbio.1000249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nguyen, A. T., and Zhang, Y. (2011) The diverse functions of Dot1 and H3K79 methylation, Genes Dev., 25, 1345-1358, https://doi.org/10.1101/gad.2057811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Godfrey, L., Crump, N. T., Thorne, R., Lau, I. J., Repapi, E., Dimou, D., Smith, A. L., Harman, J. R., Telenius, J. M., Oudelaar, A. M., Downes, D. J., Vyas, P., Hughes, J. R., and Milne, T. A. (2019) DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation, Nat. Commun., 10, 2803, https://doi.org/10.1038/s41467-019-10844-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Prange, K. H. M., Mandoli, A., Kuznetsova, T., Wang, S. Y., Sotoca, A. M., Marneth, A. E., Van Der Reijden, B. A., Stunnenberg, H. G., and Martens, J. H. A. (2017) MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia, Oncogene, 36, 3346-3356, https://doi.org/10.1038/onc.2016.488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Marschalek, R. (2020) The reciprocal world of MLL fusions: A personal view, Biochim. Biophys. Acta Gene Regul. Mech., 1863, 194547, https://doi.org/10.1016/j.bbagrm.2020.194547.

    Article  CAS  PubMed  Google Scholar 

  193. Gaussmann, A., Wenger, T., Eberle, I., Bursen, A., Bracharz, S., Herr, I., Dingermann, T., and Marschalek, R. (2007) Combined effects of the two reciprocal t(4;11) fusion proteins MLL·AF4 and AF4·MLL confer resistance to apoptosis, cell cycling capacity and growth transformation, Oncogene, 26, 3352-3363, https://doi.org/10.1038/sj.onc.1210125.

    Article  CAS  PubMed  Google Scholar 

  194. Eberle, I., Pless, B., Braun, M., Dingermann, T., and Marschalek, R. (2010) Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells, Nucleic Acids Res., 38, 5384-5395, https://doi.org/10.1093/nar/gkq307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wilhelm, A., and Marschalek, R. (2021) The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(4;11), Oncogene, 40, 6093-6102, https://doi.org/10.1038/s41388-021-02001-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ferrando, A. A., and López-Otín, C. (2017) Clonal evolution in leukemia, Nat. Med., 23, 1135-1145, https://doi.org/10.1038/nm.4410.

    Article  CAS  PubMed  Google Scholar 

  197. Greaves, M., and Maley, C. C. (2012) Clonal evolution in cancer, Nature, 481, 306-313, https://doi.org/10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Anoun, S., Lamchahab, M., Qachouh, M., Benchekroun, S., and Quessar, A. (2013) A case of acute myeloid leukemia caused by low dose methotrexate used to treat a rheumatoid arthritis patient, Iran. J. Blood Cancer, 5, 25-28.

    Google Scholar 

  199. Maddalo, D., Manchado, E., Concepcion, C. P., Bonetti, C., Vidigal, J. A., Han, Y. C., Ogrodowski, P., Crippa, A., Rekhtman, N., De Stanchina, E., Lowe, S. W., and Ventura, A. (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, 516, 423-428, https://doi.org/10.1038/nature13902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C., and Rodriguez-Perales, S. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system, Nat. Commun., 5, 1-8, https://doi.org/10.1038/ncomms4964.

    Article  CAS  Google Scholar 

  201. Sall, F. B., Shmakova, A., Karpukhina, A., Tsfasman, T., Lomov, N., Canoy, R. J., Boutboul, D., Oksenhendler, E., Toure, A. O., Lipinski, M., Wiels, J., Germini, D., and Vassetzky, Y. (2023) Epstein–Barr virus reactivation induces MYC-IGH spatial proximity and t(8;14) in B cells, J. Med. Virol., 95, e28633, https://doi.org/10.1002/jmv.28633.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1062) and the Interdisciplinary Research and Education School of Moscow State University “Molecular Technologies of Living Systems and Synthetic Biology”.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in writing this review.

Corresponding author

Correspondence to Nikolai A. Lomov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomov, N.A., Viushkov, V.S. & Rubtsov, M.A. Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors. Biochemistry Moscow 88, 892–911 (2023). https://doi.org/10.1134/S0006297923070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923070040

Keywords

Navigation