Skip to main content
Log in

Adsorption of Acylhydroperoxy-Derivatives of Phospholipids from Biomembranes by Blood Plasma Lipoproteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It has been established that acylhydroperoxy derivatives of phospholipids from oxidized rat liver mitochondria are captured predominantly by LDL particles but not by HDL during co-incubation with blood plasma lipoproteins, which refutes the previously suggested hypothesis about the involvement of HDL in the reverse transport of oxidized phospholipids and confirms the possibility of different mechanisms of lipohydroperoxide accumulation in LDL during oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

HDL:

high density lipoproteins

LDL:

low density lipoproteins

LOOH:

lipid hydroperoxides

References

  1. Tomkin, G. H. (2010) Atherosclerosis, diabetes and lipoproteins, Expert Rev. Cardiovasc. Ther., 8, 1015-1029, https://doi.org/10.1586/erc.10.45.

    Article  CAS  PubMed  Google Scholar 

  2. Arnao, V., Tuttolomondo, A., Daidone, M., and Pinto, A. (2019) Lipoproteins in atherosclerosis process, Curr. Med. Chem., 26, 1525-1543, https://doi.org/10.2174/0929867326666190516103953.

    Article  CAS  PubMed  Google Scholar 

  3. Getz, G. S., and Reardon, C. A. (2020) Atherosclerosis: cell biology and lipoproteins, Curr. Opin. Lipidol., 31, 286-290, https://doi.org/10.1097/MOL.0000000000000704.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H. H., Garruti, G., Liu, M., Portincasa, P., Wang, D. H. (2017) Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport, Ann. Hepatol., 16 (Suppl. 1), s27-s42, https://doi.org/10.5604/01.3001.0010.5495.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J. M. S., and Choudhury, R. P. (2010) Atherosclerosis regression and high-density lipoproteins, Expert Rev. Cardiovasc. Ther., 8, 1325-1334, https://doi.org/10.1586/erc.10.108.

    Article  CAS  PubMed  Google Scholar 

  6. Brewer, H. B. Jr. (2011) Clinical review: the evolving role of HDL in the treatment of high-risk patients with cardiovascular disease, J. Clin. Endocrinol. Metab., 96, 1246-1257, https://doi.org/10.1210/jc.2010-0163.

    Article  CAS  PubMed  Google Scholar 

  7. Hernáez, Á., Soria-Florido, M. T., Schröder, H., Ros, E., Pintó, X., Estruch, R., Salas-Salvadó, J., Corella, D., Arós, F., Serra-Majem, L., Martínez-González, A. M., Fiol, M., Lapetra, J., Elosua, R., Lamuela-Raventós, R. M., and Fitó, M. (2019) Role of HDL function and LDL atherogenicity on cardiovascular risk: a comprehensive examination, PLoS One, 14, e0218533, https://doi.org/10.1371/journal.pone.0218533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carr, S. S., Hooper, A. J., and Sullivan, D. R. (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment, Pathology, 51, 148-154, https://doi.org/10.1016/j.pathol.2018.11.006.

    Article  CAS  PubMed  Google Scholar 

  9. Steinberg, D., and Witztum, J. L. (2002) Is the oxidative modifications hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date reflect the hypothesis?, Circulation, 105, 2107-2111, https://doi.org/10.1161/01.CIR.0000014762.06201.06.

    Article  PubMed  Google Scholar 

  10. Parthasarathy, S., Santanam, N., and Auge, N. (1998) Oxidised low-density lipoprotein: a two-faced Janus in coronary artery disease?, Biochem. Pharmacol., 56, 279-284, https://doi.org/10.1016/S0006-2952(98)00074-4.

    Article  CAS  PubMed  Google Scholar 

  11. Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R.V., and Saini, A. K. (2020) Mechanistic insights into the oxidized low-density lipoprotein induced atherosclerosis, Oxid. Med. Cell. Longev., 2020, 1-14, https://doi.org/10.1155/2020/5245308.

    Article  CAS  Google Scholar 

  12. Barter, P. J., and Rye, K. A. (1996) High-density lipoproteins and coronary heart disease, Atherosclerosis, 121, 1-12, https://doi.org/10.1016/0021-9150(95)05675-0.

    Article  CAS  PubMed  Google Scholar 

  13. Rubins, H. B., Robins, S. J., Collins, D., Fye, C. L., and Anderson, J. W. (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group, N. Engl. J. Med., 341, 410-418, https://doi.org/10.1056/NEJM199908053410604.

    Article  CAS  PubMed  Google Scholar 

  14. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, https://doi.org/10.2174/1874609809666160926142640.

    Article  CAS  PubMed  Google Scholar 

  15. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of LDL as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants, 11, 1565, https://doi.org/10.3390/antiox11081565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2023) Malondialdehyde as a important key factor of molecular mechanisms of vascular wall damage under heart diseases development, J. Int. Mol. Sci., 24, 128, https://doi.org/10.3390/ijms24010128.

    Article  CAS  Google Scholar 

  17. Lankin, V. Z., Tikhaze, A. K., and Kumskova, E. M. (2012) Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein, Mol. Cell Biochem., 365, 93-98, https://doi.org/10.1007/s11010-012-1247-5.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y., and Chen, X. (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species, Fundam. Clin. Pharmacol., 25, 572-579, https://doi.org/10.1111/j.1472-8206.2010.00885.x.

    Article  CAS  PubMed  Google Scholar 

  19. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Kumskova, E. M., and Viigimaa, M. (2014) The initiation of the free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes, Mol. Cell. Biochem., 395, 241-252, https://doi.org/10.1007/s11010-014-2131-2.

    Article  CAS  PubMed  Google Scholar 

  20. Lankin, V. Z., Tikhaze, A. K., and Kosach, V. Ya. (2022) Comparative susceptibility to oxidation of different classes of blood plasma lipoproteins, Biochemistry (Moscow), 87, 1335-1341, https://doi.org/10.1134/S0006297922110128.

    Article  CAS  PubMed  Google Scholar 

  21. Raveh, O., Pinchuk, I., Fainaru, M., and Lichtenberg, D. (2001) Kinetics of lipid peroxidation in mixtures of HDL and LDL, mutual effects, Free Radic. Biol. Med., 31, 1486-1497, https://doi.org/10.1016/s0891-5849(01)00730-4.

    Article  CAS  PubMed  Google Scholar 

  22. Fumiaki, I., and Tomoyuki, I. (2020) High-density lipoprotein (HDL) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease, Antioxidants (Basel), 9, 362, https://doi.org/10.3390/antiox9050362.

    Article  CAS  Google Scholar 

  23. Bowry, V. W., Stanley, K. K., and Stocker, R. (1992) High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors, Proc. Natl. Acad. Sci. USA, 89, 10316-10320, https://doi.org/10.1073/pnas.89.21.10316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klimov, A. N., Nikiforova, A. A., Kuzmin, A. A., Kuznetsov, A. S., and Mackness, M. I. (1998) Is high density lipoprotein a scavenger for oxidized phospholipids of low density lipoprotein? In Advances in Lipoprotein and Atherosclerosis Research, Diagnostics and Treatment, Jena, Gustav Fisher Verlag, pp. 78-82.

  25. Klimov, A. N., Kozhemyakin, L. A., Pleskov, V. M., and Andreeva, L. I. (1987) Antioxidative effect of high density lipoproteins in the oxidation of low density lipoproteins, Bull. Expt. Biol. Med., 103, 550-556, https://doi.org/10.1007/BF00841817.

    Article  CAS  Google Scholar 

  26. Klimov, A. N., Gurevich, V. S., Nikiforova, A. A., Shatilina, L. V., Kuzmin, A. A., Plavinsky, S. L., and Teryukova, N. P. (1993) Antioxidative activity of high density lipoproteins in vivo, Atherosclerosis, 100, 13-18, https://doi.org/10.1016/0021-9150(93)90063-z.

    Article  CAS  PubMed  Google Scholar 

  27. Lindgren, F. T. (1975) Preparative ultracentrifugal laboratory procedures and suggestions for lipoprotein analysis, in Analysis of Lipids and Lipoproteins (Perkins, E. G., ed) Champaign: Amer. Oil. Chemists Soc., pp. 204-224.

  28. Vila, A., Korytowski, W., and Girotti, A. W. (2002) Spontaneous transfer of phospholipid and cholesterol hydroperoxides between cell membranes and low-density lipoprotein: assessment of reaction kinetics and prooxidant effects, Biochemistry, 41, 13705-13716, https://doi.org/10.1021/bi026467z.

    Article  CAS  PubMed  Google Scholar 

  29. Mastorikou, M., Mackness, B., Liu, Y., and Mackness, M. (2008) Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides, Diabetic Med., 25, 1049-1055, https://doi.org/10.1111/j.1464-5491.2008.02546.x.

    Article  CAS  PubMed  Google Scholar 

  30. Lankin, V. (2003) The enzymatic systems in the regulation of free radical lipid peroxidation, in “Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects, Amsterdam etc.: IOS Press, 2003, NATO Science Series, 344, pp. 8-23.

  31. Rasmiena, A. A., Barlow, C. K., Ng, T. W., Tull, D., and Meikle, P. J. (2016) High density lipoprotein efficiently accepts surface but not internal oxidised lipids from oxidised low density lipoprotein, Biochim. Biophys. Acta, 1861, 69-77, https://doi.org/10.1016/j.bbalip.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  32. Lankin, V. Z., Tikhaze, A. K., and Osis, Yu. G. (2002) Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes, Biochemistry (Moscow), 67, 566-574, https://doi.org/10.1023/a:1015502429453.

    Article  CAS  PubMed  Google Scholar 

  33. Superko, H. R., Pendyala, L., Williams, P. T., Momary, K. M., King, S. B., and Garrett, B. C. (2012) High-density lipoprotein subclasses and their relationship to cardiovascular disease, J. Clin. Lipidol., 6, 496-523, https://doi.org/10.1016/j.jacl.2012.03.001.

    Article  PubMed  Google Scholar 

  34. Williams, P. T., and Feldma, D. E. (2011) Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman’s Livermore Cohort, Atherosclerosis, 214, 196-202, https://doi.org/10.1016/j.atherosclerosis.2010.10.024.

    Article  CAS  PubMed  Google Scholar 

  35. Honda, H., Hirano, T., Ueda, M., Kojima, S., Mashiba, S., Hayase, Y., Michihata, T., and Shibata, T. (2016) High-density lipoprotein subfractions and their oxidized subfraction particles in patients with chronic kidney disease, J. Atheroscler. Thromb., 23, 81-94, https://doi.org/10.5551/jat.30015.

    Article  CAS  PubMed  Google Scholar 

  36. Mackness, B., and Mackness, M. (2012) The antioxidant properties of high-density lipoproteins in atherosclerosis, Panminerva Med., 54, 83-90.

    CAS  PubMed  Google Scholar 

  37. Mackness, M., and Mackness, B. (2013) Targeting paraoxonase-1 in atherosclerosis, Expert Opin. Ther. Targets., 17, 829-837, https://doi.org/10.1517/14728222.2013.790367.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. A.V. Doroshchuk for help in performing individual experiments.

Funding

The study was financially supported by the Russian Science Foundation (grant no. 22-15-00013).

Author information

Authors and Affiliations

Authors

Contributions

V.Z.L. – supervised the study, discussed the data; A.K.T. – wrote and edited the manuscript; V.Y.K., G.G.K. – performed experiments, prepared the manuscript.

Corresponding author

Correspondence to Vadim Z. Lankin.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lankin, V.Z., Tikhaze, A.K., Kosach, V.Y. et al. Adsorption of Acylhydroperoxy-Derivatives of Phospholipids from Biomembranes by Blood Plasma Lipoproteins. Biochemistry Moscow 88, 698–703 (2023). https://doi.org/10.1134/S0006297923050127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923050127

Keywords

Navigation