Skip to main content
Log in

Acute and Chronic Lipopolysaccharide-Induced Stress Changes Expression of Proinflammatory Cytokine Genes in the Rat Brain Region-Specifically and Affects Learning and Memory

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Goal of the current work was to conduct comparative analysis of the effects of acute and chronic lipopolysaccharide-induced stress on the behavior of rats in the Morris water maze test and on expression of mRNA of proinflammatory cytokines and BDNF in different brain structures. Relevance of this study is related to poor understanding of the effects of acute and chronic stress on manifestation of cognitive brain functions, as well as ambiguity of the literature data on the effects of both stresses on hypothalamic pituitary axis and expression of the proinflammatory cytokine genes. In the experiments with rats, acute lipopolysaccharide (LPS)-induced stress improved learning in the Morris water maze. For the period of learning, the rats under acute stress swam on average less distance to reach a hidden platform, spent less time in the peripheral zone of the pool (thigmotaxis), and had low speed compared to the control animals and to the group of rats under chronic LPS-induced stress. In the test without a platform in the pool there were no significant differences between the groups on the time spent in the platform quadrant and distance swum. Acute stress caused substantial increase of the TNF-α and IL-1β mRNA concentrations in the hippocampus and amygdala, but not in the frontal lobe in comparison with the control animals. Although chronic stress increased the levels of the TNF-α and IL-1β mRNA in the amygdala and hippocampus compared to the control groups, significance between the groups was only marginal and BDNF concentration did not differ from the control animals in any of the brain structures mentioned. Expression of the IL-6 mRNA only marginally increased in the amygdala of the animals under the acute LPS-induced stress and marginally decreased in the animals under chronic LPS stress in the hippocampus relative to the control groups. In total, the most pronounced molecular-biochemical changes occurred in the amygdala and hippocampus, where increase of the expression of the TNF-α and IL-1β interleukins mRNAs were observed in the animals under acute and chronic LPS-induced stress and no changes in the BDNF mRNA concentration were observed in the frontal lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

LPS:

lipopolysaccharide

LPS-O:

administration of a single dose of LPS 1 h prior to the start of training

LPS-X:

administration of LPS for investigation of the effect of chronic stress

PBS:

phosphate-buffered saline

PBS-O:

administration of a single dose of PBS 1 h prior to the start of learning

PBS-X:

administration of PBS for investigation of the effect of chronic stress

TNF-α:

tumor necrosis factor alpha

References

  1. Alexander, C., and Rietschel, E. T. (2001) Bacterial lipopolysaccharides and innate immunity, J. Endotoxin. Res., 7, 167-202, https://doi.org/10.1177/09680519010070030101.

    Article  CAS  PubMed  Google Scholar 

  2. Gruzdeva, V. A., Sharkova, A. V., Zaichenko, M. I., and Grigoryan, G. A. (2021) The influence of early proinflammatory stress on manifestation of impulsive behavioural in rats of different age and sex, Zhurn. Vyssh. Nervn. Deyat., 71, 114-125, https://doi.org/10.31857/S0044467721010056.

    Article  Google Scholar 

  3. Kupferschmid, B. J., and Therrien, B. A. (2018) Spatial learning responses to lipopolysaccharide in adult and aged rats, Biol. Res. Nurs., 20, 32-39, https://doi.org/10.1177/1099800417726875.

    Article  CAS  PubMed  Google Scholar 

  4. Zaichenko, M. I., Sharkova, A. V., Pavlova, I. V., Grigoryan, G. A. (2022) Sex differences in the effects of early proinflammatory stress on learning and memory of adult rats in Morris water maze, Zhurn. Vyssh. Nervn. Deyat., 72, 233-249, https://doi.org/10.31857/S0044467722020125.

    Article  Google Scholar 

  5. Stepanichev, M. Y., Goryakina, T., Manolova, A., Lazareva, N., Kvichanskii, A., Tretyakova, L., Volobueva, M., and Gulyaeva, N. (2021) Neonatal proinflammatory challenge evokes a microglial response and affects the ratio between subtypes of GABAergic interneurons in the hippocampus of juvenile rats: sex-dependent and sex-independent effects, Brain Struct. Funct., 226, 563-574, https://doi.org/10.1007/s00429-020-02199-z.

    Article  CAS  PubMed  Google Scholar 

  6. Grigoryan, G. A. (2020) Sex differences in behavior and biochemical markers in animals in response to neuroinflammatory stress, Usp. Fiziol. Nauk, 51, 18-32, https://doi.org/10.31857/S0301179820010051.

    Article  Google Scholar 

  7. Alzahrani, N. A., Bahaidrah, K. A., Mansouri, R. A., Alsufiani, H. M., and Alghamdi, B. S. (2022) Investigation of the optimal dose for experimental lipopolysaccharide-induced recognition memory impairment: behavioral and histological studies, J. Integr. Neurosci., 21, 49, https://doi.org/10.31083/j.jin2102049.

    Article  PubMed  Google Scholar 

  8. Arai, K., Matsuki, N., Ikegaya, Y., and Nishiyama, N. (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice, Jpn. J. Pharmacol., 87, 195-201, https://doi.org/10.1254/jjp.87.195.

    Article  CAS  PubMed  Google Scholar 

  9. Couch, Y., Trofimov, A., Markova, N., Nikolenko, V., Steinbusch, H. W., Chekhonin, V., Schroeter, C., Lesch, K.-P., Anthony, D. C., and Strekalova, T. (2016) Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice, J. Neuroinflammation, 13, 108, https://doi.org/10.1186/s12974-016-0572-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dang, R., Guo, Y. Y., Zhang, K., Jiang, P., and Zhao, M. G. (2019) Predictable chronic mild stress promotes recovery from LPS-induced depression, Mol. Brain, 12, 42, https://doi.org/10.1186/s13041-019-0463-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shaw, K. N., Commins, S., and O’Mara, S. M. (2001) Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus, Behav. Brain Res., 124, 47-54, https://doi.org/10.1016/s0166-4328(01)00232-7.

    Article  CAS  PubMed  Google Scholar 

  12. Sparkman, N. L., Martin, L. A., Calvert, W. S., and Boehm, G. W. (2005) Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice, Behav. Brain Res., 159, 145-151, https://doi.org/10.1016/j.bbr.2004.10.011.

    Article  CAS  PubMed  Google Scholar 

  13. Kupferschmid, B. J., Rowsey, P. J., and Riviera, M. (2020) Characterization of spatial learning and sickness responses in aging rats following recurrent lipopolysaccharide administration, Biol. Res. Nurs., 22, 92-102, https://doi.org/10.1177/1099800419875824.

    Article  PubMed  Google Scholar 

  14. Kahn, M. S., Kranjac, D., Alonzo, C. A., Haase, J. H., Cedillos, R. O., McLinden, K. A., Boehm, G. W., and Chumley, M. J. (2012) Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse, Behav. Brain Res., 229, 176-184, https://doi.org/10.1016/j.bbr.2012.01.010.

    Article  CAS  PubMed  Google Scholar 

  15. Xin, Y. R., Jiang, J. X., Hu, Y., Pan, J. P., Mi, X. N., Gao, Q., Xiao, F., Zhang, W., and Luo, H. M. (2019) The Immune system drives synapse loss during lipopolysaccharide-induced learning and memory impairment in mice, Front. Aging Neurosci., 11, 279, https://doi.org/10.3389/fnagi.2019.00279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barter, J., Kumar, A., Rani, A., Colon-Perez, L. M., Febo, M., and Foster, T. C. (2020) Differential effect of repeated lipopolysaccharide treatment and aging on hippocampal function and biomarkers of hippocampal senescence, Mol. Neurobiol., 57, 4045-4059, https://doi.org/10.1007/s12035-020-02008-y.

    Article  CAS  PubMed  Google Scholar 

  17. Arab, Z., Hosseini, M., Marefati, N., Beheshti, F., Anaeigoudari, A., Sadeghnia, H. R., and Boskabady, M. H. (2022) Neuroprotective and memory enhancing effects of Zataria multiflora in lipopolysaccharide-treated rats, Vet. Res. Forum, 13, 101-110, https://doi.org/10.30466/vrf.2020.117553.2786.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Keymoradzadeh, A., Hedayati, Ch. M., Abedinzade, M., Gazor, R., Rostampour, M., and Taleghani, B. K. (2020) Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats, Behav. Brain Res., 394, 112814, https://doi.org/10.1016/j.bbr.2020.112814.

    Article  CAS  PubMed  Google Scholar 

  19. Jin, Y., Peng, J., Wang, X., Zhang, D., and Wang, T. (2017) Ameliorative effect of ginsenoside rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system, Neurochem. Res., 42, 1299-1307, https://doi.org/10.1007/s11064-016-2171-y.

    Article  CAS  PubMed  Google Scholar 

  20. Sohroforouzani, A. M., Shakerian, S., Ghanbarzadeh, M., and Alaei, H. (2020) Treadmill exercise improves LPS-induced memory impairments via endocannabinoid receptors and cyclooxygenase enzymes, Brain Res., 380, 112440, https://doi.org/10.1016/j.bbr.2019.112440.

    Article  CAS  Google Scholar 

  21. Grigoryan, G. A., Mitchell, S. N., Hodges, H., Sinden, J. D., and Gray, J. A. (1994) Are the cognitive-enhancing effects of nicotine in the rat with lesions to the forebrain cholinergic projection system mediated by an interaction with the noradrenergic system?, Pharmacol. Biochem. Behav., 49, 511-521, https://doi.org/10.1016/0091-3057(94)90063-9.

    Article  CAS  PubMed  Google Scholar 

  22. Shanks, N., Larocque, S., and Meaney, M. J. (1995) Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress, J. Neurosci., 15, 376-384, https://doi.org/10.1523/JNEUROSCI.15-01-00376.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shanks, N., Windle, R. J., Perks, P. A., Harbuz, M. S., Jessop, D. S., Ingram, C. D., and Lightman, S. L. (2000) Earlylife exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation, Proc. Natl. Acad. Sci. USA, 97, 5645-5650, https://doi.org/10.1073/pnas.090571897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paxinos, G., and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates, Academic Press, 6th Edn, San Diego.

  25. Dobryakova, Y. V., Kasianov, A., Zaichenko, M. I., Stepanichev, M. Y., Chesnokova, E. A., Kolosov, P. M., Markevich, V. A., and Bolshakov, A. P. (2018) Intracerebroventricular administration of 192IgG-saporin alters expression of microglia-associated genes in the dorsal but not ventral hippocampus, Front. Mol. Neurosci., 10, 429, https://doi.org/10.3389/fnmol.2017.00429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  27. Mizobuchi, H., Yamamoto, K., Tsutsui, S., Yamashita, M., Nakata, Y., Inagawa, H., Kohchi, C., and Soma, G. I. (2020) A unique hybrid characteristic having both pro- and anti-inflammatory phenotype transformed by repetitive low-dose lipopolysaccharide in C8-B4 microglia, Sci. Rep., 10, 8945, https://doi.org/10.1038/s41598-020-65998-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hauss-Wegrzyniak, B., Vraniak, P. D., and Wenk, G. L. (2000) LPS-induced neuroinflammatory effects do not recover with time, Neuroreport, 11, 1759-1763, https://doi.org/10.1097/00001756-200006050-00032.

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, S., Ide, M., Shibutani, T., Ohtaki, H., Numazawa, S., Shioda, S., and Yoshida, T. (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats, J. Neurosci. Res., 83, 557-566, https://doi.org/10.1002/jnr.20752.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Z. B., Wang, H., Rao, X. R., Liang, T., Xu, J., Cai, X. S., and Sheng, G. Q. (2010) Effects of immune activation on the retrieval of spatial memory, Neurosci, Bull., 26, 355-364, https://doi.org/10.1007/s12264-010-0622-z.

    Article  CAS  PubMed  Google Scholar 

  31. Grigoryan, G. A., Weiss, I., and Feldon, I. (2010) Social isolation improves working memory at reversal but not primary radial-arm learning in rats, Zhurn. Vysch. Nervn. Deyat., 60, 560-567.

    CAS  Google Scholar 

  32. Cunningham, C., and Sanderson, D. J. (2008) Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory, Brain Behav. Immun., 22, 1117-1127, https://doi.org/10.1016/j.bbi.2008.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, B., Wang, Z. G., Ding, J., Liu, N., Wang, D. M., Ding, L. C., and Yang, C. (2014) Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus, Exp. Ther. Med., 7, 750-754, https://doi.org/10.3892/etm.2014.1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sparkman, N. L., Buchanan, J. B., Heyen, J. R., Chen, J., Beverly, J. L., and Johnson, R. W. J. (2006) Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers, Neuroscience, 26, 10709-10716, https://doi.org/10.1523/JNEUROSCI.3376-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., and de Vries, E. F. J. (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation, Mol. Neurobiol., 56, 3295-3312, https://doi.org/10.1007/s12035-018-1283-6.

    Article  CAS  PubMed  Google Scholar 

  36. Elkabes, S., Peng, L., and Black, I. B. (1998) Lipopolysaccharide differentially regulates microglial trk receptors and neurotrophin expression, J. Neurosci Res., 54, 117-122, https://doi.org/10.1002/(SICI)1097-4547(19981001)54:1<117::AID-JNR12>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  37. Miwa, T., Furukawa, S., Nakajima, K., Furukawa, Y., and Kohsaka, S. (1997) Lipopolysaccaride enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia, J. Neurosci. Res., 50, 1023-1029, https://doi.org/10.1002/(SICI)1097-4547(19971215)50:6<1023::AID-JNR13>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., and Zhu, L. (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice, Sci. Rep., 9, 5790, https://doi.org/10.1038/s41598-019-42286-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamdi, S. P., Raval, A., and Nakhate, K. T. (2021) Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities, Cytokine, 139, 155408, https://doi.org/10.1016/j.cyto.2020.155408.

    Article  CAS  PubMed  Google Scholar 

  40. Chowdhury, A. A., Gawali, N. B., Munshi, R., and Juvekar, A. R. (2018) Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice, Metab. Brain Dis., 33, 681-691, https://doi.org/10.1007/s11011-017-0147-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, grant no. 19-015-00129 A.

Author information

Authors and Affiliations

Authors

Contributions

Zaichenko, M.I. – supervision of experimental work, participation in performing experiments and discussion of the results; Philenko, P. – performing biochemical experiments; Sidorina, V. – performing behavioral experiments; Grigoryan, G.A. – analysis of the literature and of obtained results, writing the paper.

Corresponding author

Correspondence to Mariya I. Zaichenko.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichenko, M.I., Philenko, P., Sidorina, V. et al. Acute and Chronic Lipopolysaccharide-Induced Stress Changes Expression of Proinflammatory Cytokine Genes in the Rat Brain Region-Specifically and Affects Learning and Memory. Biochemistry Moscow 88, 526–538 (2023). https://doi.org/10.1134/S0006297923040089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923040089

Keywords

Navigation