Skip to main content
Log in

Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region.

Methods

This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)—control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied.

Results

Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain’s cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents.

Conclusions

The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  1. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Book  Google Scholar 

  2. Dukas R (2004) Evolutionary biology of animal cognition. Ann Rev Ecol Evol Syst 35:347–374

    Article  Google Scholar 

  3. Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos T R Soc B 357(1427):1539–1547

    Article  Google Scholar 

  4. Platt ML (2002) Neural correlates of decisions. Curr Opin Neurol 12(2):141–148

    Article  CAS  Google Scholar 

  5. Werf YD, Jolles J, Witter MP, Uylings HB (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39(4–5):1047–1062

    PubMed  Google Scholar 

  6. Fama R, Sullivan EV (2015) Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev 54:29–37

    Article  PubMed  PubMed Central  Google Scholar 

  7. Graff-Radford NR, Tranel D, Van Hoesen GW, Brandt JP (1990) Diencephalic amnesia. Brain 113(1):1–25

    Article  PubMed  Google Scholar 

  8. Sandson TA, Daffner KR, Carvalho PA, Mesulam MM (1991) Frontal lobe dysfunction following infarction of the left-sided medial thalamus. Arch Neurol Chicago 48(12):1300–1303

    Article  CAS  PubMed  Google Scholar 

  9. Diana RA, Yonelinas AP, Ranganath C (2010) Medial temporal lobe activity during source retrieval reflects information type, not memory strength. J Cog Neurosci 22(8):1808–1818

    Article  Google Scholar 

  10. Kravitz DJ, Peng CS, Baker CI (2011) Real-world scene representations in high-level visual cortex: it’s the spaces more than the places. J Neurosci 31(20):7322–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janzen G, Wagensveld B, van Turennout M (2007) Neural representation of navigational relevance is rapidly induced and long lasting. Cereb Cortex 17(4):975–981

    Article  PubMed  Google Scholar 

  12. Eichenbaum H (2017) The role of the hippocampus in navigation is memory. J Neurophysiol 117(4):1785–1796

    Article  PubMed  PubMed Central  Google Scholar 

  13. Foy MR, Stanton ME, Levine S, Thompson RF (1987) Behavioral stress impairs long-term potentiation in rodent hippocampus. Neurobiol Learn Mem 48(1):138–149

    CAS  Google Scholar 

  14. Li S, Wang C, Wang W, Dong H, Hou P, Tang Y (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82(17–18):934–942

    Article  CAS  PubMed  Google Scholar 

  15. Sandi C (2013) Stress and cognition. Wiley Interdiscip Rev Cogn Sci 4(3):245–261

    Article  PubMed  Google Scholar 

  16. Duman RS (2004) Neural plasticity: consequences of stress and actions of antidepressant treatment. Dialogues Clin Neurosci 6(2):157–169

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Yuan J, Pang J, Ma J, Han B, Geng Y, Shen L, Wang H, Ma Q, Wang Y, Wang M (2016) Effects of chronic stress on cognition in male SAMP8 Mice. Cell Physiol Biochem 39(3):1078–1086

    Article  CAS  PubMed  Google Scholar 

  18. Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10(4):152–158

    Article  PubMed  Google Scholar 

  19. Antontseva E, Bondar N, Reshetnikov V, Merkulova T (2020) The effects of chronic stress on brain myelination in humans and in various rodent models. Neuroscience 441:226–238

    Article  CAS  PubMed  Google Scholar 

  20. Schwabe L, Dalm S, Schächinger H, Oitzl MS (2008) Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiol Learn Mem 90(3):495–503

    Article  PubMed  Google Scholar 

  21. Ninan I (2014) Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacol 76:684–695

    Article  CAS  Google Scholar 

  22. Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones KR, Reichardt LF, Barbacid M (1991) The trkB tyrosine kinase is a receptor forbrain derived neurotrophic factor and neurotrophin-3. Cell 66:395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11(1):143–153

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagao M, Hayashi H (2009) Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neurosci Lett 449(2):103–107

    Article  CAS  PubMed  Google Scholar 

  25. Dani JW, Armstrong DM, Benowitz LI (1991) Mapping the development of the rat brain by GAP-43 immunocytochemistry. Neurosci 40(1):277–287

    Article  CAS  Google Scholar 

  26. Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP (2000) Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci USA 97(21):11232–11237

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kida S, Josselyn SA, Pena de Ortiz S, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    Article  CAS  PubMed  Google Scholar 

  28. Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required forthe consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 358(1432):805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154

    Article  CAS  PubMed  Google Scholar 

  30. Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OF, Sousa N, Sotiropoulos I (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plast. https://doi.org/10.1155/2016/6391686

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hei M, Chen P, Wang S, Li X, Xu M, Zhu X, Wang Y, Duan J, Huang Y, Zhao S (2019) Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behavi Brain Res 365:26–35

    Article  CAS  Google Scholar 

  32. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nature Rev Neurosci 5(12):917–930

    Article  CAS  Google Scholar 

  33. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosi 3(6):453–462

    Article  CAS  Google Scholar 

  34. Ding JX, Rudak PT, Inoue W, Haeryfar SM (2021) Physical restraint mouse models to assess immune responses under stress with or without habituation. STAR Protocol 2(4):100838

    Article  CAS  Google Scholar 

  35. Sangma J, Trivedi AK (2023) Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochem Photobiol Sci 22(10):2297–2314

    Article  CAS  PubMed  Google Scholar 

  36. Dellu F, Mayo W, Cherkaoui J, Moal Le, Simon H (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain res 588(1):132–139

    Article  CAS  PubMed  Google Scholar 

  37. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats 1: behavioral data. Behav Brain Res 31(1):47–59

    Article  CAS  PubMed  Google Scholar 

  38. Montgomery KC (1955) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48(4):254–260

    Article  CAS  PubMed  Google Scholar 

  39. Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ’fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327(1):1–5

    Article  CAS  PubMed  Google Scholar 

  40. Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2(2):97–116

    Article  Google Scholar 

  41. Renthlei Z, Trivedi AK (2019) Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus). Environ Pollut 255(Pt 2):113278

    Article  CAS  PubMed  Google Scholar 

  42. Renthlei R, Gurumayum T, Borah BK, Trivedi AK (2019) Daily expression of clockgenes in central and peripheral tissues of tree sparrow (Passer montanus). Chronobiol Int 36:110–121

    Article  CAS  PubMed  Google Scholar 

  43. Renthlei Z, Borah BK, Gurumayum T, Trivedi AK (2020) Season dependent effects of urban environment on circadian clock of tree sparrow (Passer montanus). Photochem Photobiol Sci 19(12):1741–1749

    Article  CAS  PubMed  Google Scholar 

  44. Renthlei Z, Borah BK, Gurumayum T, Trivedi AK (2021) Urban environment alter the timing of progression of testicular recrudescence in tree sparrow (Passer montanus). Environ Sci Pollut Res 28(24):31097–31107

    Article  CAS  Google Scholar 

  45. Renthlei Z, Hmar L, Trivedi AK (2021) High temperature attenuates testicular responses in tree sparrow (Passer montanus). Gen Comp Endocrinol 301:113654

    Article  CAS  PubMed  Google Scholar 

  46. Borah BK, Renthlei Z, Trivedi AK (2020) Hypothalamus but not liver retains daily expression of clock genes during hibernation in terai tree frog (Polypedates teraiensis). Chronobiol Int 37(4):485–492

    Article  CAS  PubMed  Google Scholar 

  47. Borah BK, Renthlei Z, Tripathi A, Trivedi AK (2022) Molecular and epigenetic regulation of seasonal reproduction in Terai tree frog (Polypedates teraiensis). Photoch Photobiol Sci 21(6):1067–1076

    Article  CAS  Google Scholar 

  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  49. Conrad CD, Galea LA, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110(6):1321–1334

    Article  CAS  PubMed  Google Scholar 

  50. Wright RL, Conrad CD (2005) Chronic stress leaves novelty-seeking behavior intact while impairing spatial recognition memory in the Y-maze. Stress 8(2):151–154

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254

    Article  CAS  PubMed  Google Scholar 

  52. Agarwal P, Palin N, Walker SL, Glasper ER (2020) Sex-dependent effects of paternal deprivation and chronic variable stress on novel object recognition in adult California mice (Peromyscus californicus). Hor Behav 117:104610

    Article  CAS  Google Scholar 

  53. Garcia-Marquez C, Armario A (1987) Chronic stress depresses exploratory activity and behavioral performance in the forced swimming test without altering ACTH response to a novel acute stressor. Physiol Behav 40(1):33–38

    Article  CAS  PubMed  Google Scholar 

  54. Shors TJ (2004) Learning during stressful times. Learn Memory 11(2):137–144

    Article  ADS  Google Scholar 

  55. Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15(11):1714–1722

    Article  PubMed  Google Scholar 

  56. McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mika A, Mazur GJ, Hoffman AN, Talboom JS, Bimonte-Nelson HA, Sanabria F, Conrad CD (2012) Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory. Behav Neurosci 126(5):605–619

    Article  PubMed  PubMed Central  Google Scholar 

  58. Krug A, Krach S, Jansen A, Nieratschker V, Witt SH, Shah NJ, Nöthen MM, Rietschel M, Kircher T (2013) The effect of neurogranin on neural correlates of episodic memory encoding and retrieval. Schizophrenia Bull 39(1):141–150

    Article  Google Scholar 

  59. Ohi K, Hashimoto R, Yasuda Y, Fukumoto M, Yamamori H, Umeda-Yano S, Fujimoto M, Iwase M, Kazui H, Takeda M (2013) Influence of the NRGN gene on intellectual ability in schizophrenia. J Hum Genet 58(10):700–705

    Article  CAS  PubMed  Google Scholar 

  60. Inkster B, Zai G, Lewis G, Miskowiak KW (2018) GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Trans Psychiat 8(1):216

    Article  Google Scholar 

  61. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN (2001) Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11(6):763–775

    Article  CAS  PubMed  Google Scholar 

  62. Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neurosci 300:141–154

    Article  Google Scholar 

  63. Bobińska K, Gałecka E, Szemraj J, Gałecki P, Talarowska M (2017) Is there a link between TNF gene expression and cognitive deficits in depression? Acta Biochim Pol 64(1):65–73

    PubMed  Google Scholar 

  64. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki E, Shintani F, Kanba S, Asai M, Nakaki T (1997) Immobilization stress increases mRNA levels of interleukin-1 receptor antagonist in various rat brain regions. Cell Mol Neurobiol 17(5):557–562

    Article  CAS  PubMed  Google Scholar 

  66. Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev 25(1):29–41

    Article  CAS  PubMed  Google Scholar 

  67. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13(7):826–834

    Article  CAS  PubMed  Google Scholar 

  68. Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiat 68(5):408–415

    Article  PubMed  Google Scholar 

  69. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. P Nat Acad Sci USA 95(9):5335–5340

    Article  ADS  CAS  Google Scholar 

  70. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33(21):9003–9012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17(1):89–96

    Article  CAS  PubMed  Google Scholar 

  72. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bowers ME, Yehuda R (2016) Intergenerational transmission of stress in humans. Neuropsych 41(1):232–244

    Google Scholar 

  74. Yehuda R, Bell A, Bierer LM, Schmeidler J (2008) Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. J Psychiat Res 42(13):1104–1111

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work utilized the facility created by funding from the Department of Science and Technology under the Cognitive Science and Research Initiative (DST/CSRI/2017/37(C). Funding from the Department of Science and Technology under the DST-FIST program to create infrastructure in the Department of Zoology, Mizoram University is greatly acknowledged. Experimental facility created under DBT BUILDER program is also acknowledged.

Funding

There is no specific funding associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

TSK and JTS executed the experiment. ZR performed qPCR analysis. AKT conceived the idea and provided resources. All authors contributed to drafting the manuscript.

Corresponding author

Correspondence to Amit K. Trivedi.

Ethics declarations

Competing interests

The authors report no conflict of interest.

Ethical approval

The study has been approved by the Institutional Animal Ethics Committee of Mizoram University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalrinawma, T.S.K., Sangma, J.T., Renthlei, Z. et al. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 51, 278 (2024). https://doi.org/10.1007/s11033-024-09224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09224-y

Keywords

Navigation