Skip to main content
Log in

Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Small heat shock proteins (sHsps) play an important role in the maintenance of proteome stability and, particularly, in stabilization of the cytoskeleton and cell contractile apparatus. Cell exposure to different types of stress is accompanied by the translocation of sHsps onto actin filaments; therefore, it is commonly believed that the sHsps are true actin-binding proteins. Investigations of last years have shown that this assumption is incorrect. Stress-induced translocation of sHsp to actin filaments is not the result of direct interaction of these proteins with intact actin, but results from the chaperone-like activity of sHsps and their interaction with various actin-binding proteins. HspB1 and HspB5 interact with giant elastic proteins titin and filamin thus providing an integrity of the contractile apparatus and its proper localization in the cell. HspB6 binds to the universal adapter protein 14-3-3 and only indirectly affects the structure of actin filament. HspB7 interacts with filamin C and controls actin filament assembly. HspB8 forms tight complex with the universal regulatory and adapter protein Bag3 and participates in the chaperone-assisted selective autophagy (CASA) of actin-binding proteins (e.g., filamin), as well as in the actin-depending processes taking place in mitoses. Hence, the mechanisms of sHsp participation in the maintenance of the contractile apparatus and cytoskeleton are much more complicated and diverse than it has been postulated earlier and are not limited to direct interactions of sHsps with actin. The old hypothesis on the direct binding of sHsps to intact actin should be revised and further detailed investigation on the sHsp interaction with minor proteins participating in the formation and remodeling of actin filaments is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Janowska, M. K., Baughman, H. E. R., Woods, C. N., and Klevit, R. E. (2019) Mechanisms of small heat shock proteins, Cold Spring Harb. Perspect. Biol., 11, https://doi.org/10.1101/cshperspect.a034025.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riedl, M., Strauch, A., Catici, D. A. M., and Haslbeck, M. (2020) Proteinaceous transformers: Structural and functional variability of human sHsps, Int. J. Mol. Sci., 21, 5448, https://doi.org/10.3390/ijms21155448.

    Article  CAS  PubMed Central  Google Scholar 

  3. Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., et al. (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins, FASEB J., 24, 3633-3642, https://doi.org/10.1096/fj.10-156992.

    Article  CAS  PubMed  Google Scholar 

  4. Bourrelle-Langlois, M., Morrow, G., Finet, S., and Tanguay, R. M. (2016) In vitro structural and functional characterization of the small heat shock Proteins (sHSP) of the cyanophage S-ShM2 and its host, Synechococcus sp. WH7803, PLoS One, 11, e0162233, https://doi.org/10.1371/journal.pone.0162233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vos, M. J., Kanon, B., and Kampinga, H. H. (2009) HSPB7 is a SC35 speckle resident small heat shock protein, Biochim. Biophys. Acta, 1793, 1343-1353, https://doi.org/10.1016/j.bbamcr.2009.05.005.

    Article  CAS  PubMed  Google Scholar 

  6. Kappé, G., Franck, E., Verschuure, P., Boelens, W. C., Leunissen, J. A., et al. (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10, Cell Stress Chaperones, 8, 53-61, https://doi.org/10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fontaine, J. M., Rest, J. S., Welsh, M. J., and Benndorf, R. (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins, Cell Stress Chaperones, 8, 62-69, https://doi.org/10.1379/1466-1268(2003)8<62:tsodfp>2.0.co;2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cristofani, R., Piccolella, M., Crippa, V., Tedesco, B., Montagnani Marelli, M., et al. (2021) The role of HSPB8, a component of the chaperone-assisted selective autophagy machinery, in cancer, Cells, 10, 335, https://doi.org/10.3390/cells10020335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arrigo, A. P. (2013) Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: an update, FEBS Lett., 587, 1959-1969, https://doi.org/10.1016/j.febslet.2013.05.011.

    Article  CAS  PubMed  Google Scholar 

  10. Xiong, J., Li, Y., Tan, X., and Fu, L. (2020) Small heat shock proteins in cancers: Functions and therapeutic potential for cancer therapy, Int. J. Mol. Sci., 21, 6611, https://doi.org/10.3390/ijms21186611.

    Article  CAS  PubMed Central  Google Scholar 

  11. Wettstein, G., Bellaye, P. S., Micheau, O., and Bonniaud, P. (2012) Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity?, Int. J. Biochem. Cell Biol., 44, 1680-1686.

    Article  CAS  Google Scholar 

  12. Mounier, N., and Arrigo, A. P. (2002) Actin cytoskeleton and small heat shock proteins: How do they interact?, Cell Stress Chaperones, 7, 167-176, https://doi.org/10.1379/1466-1268(2002)007<0167:acashs>2.0.co;2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miron, T., Wilchek, M., and Geiger, B. (1988) Characterization of an inhibitor of actin polymerization in vinculin-rich fraction of turkey gizzard smooth muscle, Eur. J. Biochem., 178, 543-553, https://doi.org/10.1111/j.1432-1033.1988.tb14481.x.

    Article  CAS  PubMed  Google Scholar 

  14. Miron, T., Vancompernolle, K., Vandekerckhove, J., Wilchek, M., and Geiger, B. (1991) A 25-kDa inhibitor of actin polymerization is a low molecular mass heat shock protein, J. Cell Biol., 114, 255-261, https://doi.org/10.1083/jcb.114.2.255.

    Article  CAS  PubMed  Google Scholar 

  15. Benndorf, R., Hayess, K., Ryazantsev, S., Wieske, M., Behlke, J., et al. (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity, J. Biol. Chem., 269, 20780-20784.

    Article  CAS  Google Scholar 

  16. Jovcevski, B., Kelly, M. A., Rote, A. P., Berg, T., Gastall, H. Y., et al. (2015) Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity, Chem. Biol., 22, 186-195, https://doi.org/10.1016/j.chembiol.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  17. Wieske, M., Benndorf, R., Behlke, J., Dolling, R., Grelle, G., et al. (2001) Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization, Eur. J. Biochem., 268, 2083-2090, https://doi.org/10.1046/j.1432-1327.2001.02082.x.

    Article  CAS  PubMed  Google Scholar 

  18. Panasenko, O. O., Kim, M. V., Marston, S. B., and Gusev, N. B. (2003) Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin, Eur. J. Biochem., 270, 892-901, https://doi.org/10.1046/j.1432-1033.2003.03449.x.

    Article  CAS  PubMed  Google Scholar 

  19. Pivovarova, A. V., Mikhailova, V. V., Chernik, I. S., Chebotareva, N. A., Levitsky, D. I., et al. (2005) Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin, Biochem. Biophys. Res. Commun., 331, 1548-1553, https://doi.org/10.1016/j.bbrc.2005.04.077.

    Article  CAS  PubMed  Google Scholar 

  20. Pivovarova, A. V., Chebotareva, N. A., Chernik, I. S., Gusev, N. B., and Levitsky, D. I. (2007) Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin, FEBS J., 274, 5937-5948, https://doi.org/10.1111/j.1742-4658.2007.06117.x.

    Article  CAS  PubMed  Google Scholar 

  21. Golenhofen, N., Perng, M. D., Quinlan, R. A., and Drenckhahn, D. (2004) Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle, Histochem. Cell Biol., 122, 415-425, https://doi.org/10.1007/s00418-004-0711-z.

    Article  CAS  PubMed  Google Scholar 

  22. Lavoie, J. N., Hickey, E., Weber, L. A., and Landry, J. (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27, J. Biol. Chem., 268, 24210-24214.

    Article  CAS  Google Scholar 

  23. Lavoie, J. N., Lambert, H., Hickey, E., Weber, L. A., and Landry, J. (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27, Mol. Cell. Biol., 15, 505-516, https://doi.org/10.1128/MCB.15.1.505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, X., Van Marion, D. M. S., Wiersma, M., Zhang, D., and Brundel, B. (2017) The protective role of small heat shock proteins in cardiac diseases: Key role in atrial fibrillation, Cell Stress Chaperones, 22, 665-674, https://doi.org/10.1007/s12192-017-0799-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kotter, S., Unger, A., Hamdani, N., Lang, P., Vorgerd, M., et al. (2014) Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins, J. Cell Biol., 204, 187-202, https://doi.org/10.1083/jcb.201306077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tucker, N. R., and Shelden, E. A. (2009) Hsp27 associates with the titin filament system in heat-shocked zebrafish cardiomyocytes, Exp. Cell Res., 315, 3176-3186, https://doi.org/10.1016/j.yexcr.2009.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, X. Y., Chen, L., Cai, X. L., and Yang, H. T. (2008) Overexpression of heat shock protein 27 protects against ischaemia/reperfusion-induced cardiac dysfunction via stabilization of troponin I and T, Cardiovasc. Res., 79, 500-508, https://doi.org/10.1093/cvr/cvn091.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Laorden, E., Almela, P., Milanes, M. V., and Laorden, M. L. (2015) Expression of heat shock protein 27 and troponin T and troponin I after naloxone-precipitated morphine withdrawal, Eur. J. Pharmacol., 766, 142-150, https://doi.org/10.1016/j.ejphar.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  29. Collier, M. P., Alderson, T. R., de Villiers, C. P., Nicholls, D., Gastall, H. Y., et al. (2019) HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C, Sci. Adv., 5, eaav8421, https://doi.org/10.1126/sciadv.aav8421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clark, A. R., Vree Egberts, W., Kondrat, F. D. L., Hilton, G. R., Ray, N. J., et al. (2018) Terminal regions confer plasticity to the tetrameric assembly of human HspB2 and HspB3, J. Mol. Biol., 430, 3297-3310, https://doi.org/10.1016/j.jmb.2018.06.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabhu, S., Raman, B., Ramakrishna, T., and Rao, Ch. M. (2012) HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: Structural and functional aspects, PLoS One, 7, e29810, https://doi.org/10.1371/journal.pone.0029810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morelli, F. F., Verbeek, D. S., Bertacchini, J., Vinet, J., Mediani, L., et al. (2017) Aberrant compartment formation by HSPB2 mislocalizes lamin A and compromises nuclear integrity and function, Cell Rep., 20, 2100-2115, https://doi.org/10.1016/j.celrep.2017.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiago, T., Hummel, B., Morelli, F. F., Basile, V., Vinet, J., et al. (2021) Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor, Cell Death Dis., 12, 452, https://doi.org/10.1038/s41419-021-03737-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shama, K. M., Suzuki, A., Harada, K., Fujitani, N., Kimura, H., et al. (1999) Transient up-regulation of myotonic dystrophy protein kinase-binding protein, MKBP, and HSP27 in the neonatal myocardium, Cell Struct. Funct., 24, 1-4, https://doi.org/10.1247/csf.24.1.

    Article  CAS  PubMed  Google Scholar 

  35. Morrison, L. E., Whittaker, R. J., Klepper, R. E., Wawrousek, E. F., and Glembotski, C. C. (2004) Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model, Am. J. Physiol. Heart Circ. Physiol., 286, H847-855, https://doi.org/10.1152/ajpheart.00715.2003.

    Article  CAS  PubMed  Google Scholar 

  36. Pinz, I., Robbins, J., Rajasekaran, N. S., Benjamin, I. J., and Ingwall, J. S. (2008) Unmasking different mechanical and energetic roles for the small heat shock proteins CryAB and HSPB2 using genetically modified mouse hearts, FASEB J., 22, 84-92, https://doi.org/10.1096/fj.07-8130com.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida, K., Aki, T., Harada, K., Shama, K. M., Kamoda, Y., et al. (1999) Translocation of HSP27 and MKBP in ischemic heart, Cell Struct. Funct., 24, 181-185, https://doi.org/10.1247/csf.24.181.

    Article  CAS  PubMed  Google Scholar 

  38. Golenhofen, N., Redel, A., Wawrousek, E. F., and Drenckhahn, D. (2006) Ischemia-induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium, Pflugers Arch., 451, 518-525, https://doi.org/10.1007/s00424-005-1488-1.

    Article  CAS  PubMed  Google Scholar 

  39. Verschuure, P., Croes, Y., van den Ijssel, P. R., Quinlan, R. A., de Jong, W. W., et al. (2002) Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition, J. Mol. Cell. Cardiol., 34, 117-128, https://doi.org/10.1006/jmcc.2001.1493.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, K., and Spector, A. (1996) alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner, Eur. J. Biochem., 242, 56-66, https://doi.org/10.1111/j.1432-1033.1996.0056r.x.

    Article  CAS  PubMed  Google Scholar 

  41. Singh, B. N., Rao, K. S., Ramakrishna, T., Rangaraj, N., and Rao, Ch. M. (2007) Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo, J. Mol. Biol., 366, 756-767, https://doi.org/10.1016/j.jmb.2006.12.012.

    Article  CAS  PubMed  Google Scholar 

  42. Golenhofen, N., Htun, P., Ness, W., Koob, R., Schaper, W., et al. (1999) Binding of the stress protein alpha B-crystallin to cardiac myofibrils correlates with the degree of myocardial damage during ischemia/reperfusion in vivo, J. Mol. Cell. Cardiol., 31, 569-580, https://doi.org/10.1006/jmcc.1998.0892.

    Article  CAS  PubMed  Google Scholar 

  43. Golenhofen, N., Arbeiter, A., Koob, R., and Drenckhahn, D. (2002) Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin, J. Mol. Cell. Cardiol., 34, 309-319, https://doi.org/10.1006/jmcc.2001.1513.

    Article  CAS  PubMed  Google Scholar 

  44. Bullard, B., Ferguson, C., Minajeva, A., Leake, M. C., Gautel, M., et al. (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle, J. Biol. Chem., 279, 7917-7924, https://doi.org/10.1074/jbc.M307473200.

    Article  CAS  PubMed  Google Scholar 

  45. Kaiser, C. J. O., Peters, C., Schmid, P. W. N., Stavropoulou, M., Zou, J., et al. (2019) The structure and oxidation of the eye lens chaperone alphaA-crystallin, Nat. Struct. Mol. Biol., 26, 1141-1150, https://doi.org/10.1038/s41594-019-0332-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bukach, O. V., Seit-Nebi, A. S., Marston, S. B., and Gusev, N. B. (2004) Some properties of human small heat shock protein Hsp20 (HspB6), Eur. J. Biochem., 271, 291-302, https://doi.org/10.1046/j.1432-1033.2003.03928.x.

    Article  CAS  PubMed  Google Scholar 

  47. Weeks, S. D., Baranova, E. V., Heirbaut, M., Beelen, S., Shkumatov, A. V., et al. (2014) Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6, J. Struct. Biol., 185, 342-354, https://doi.org/10.1016/j.jsb.2013.12.009.

    Article  CAS  PubMed  Google Scholar 

  48. Bukach, O. V., Glukhova, A. E., Seit-Nebi, A. S., and Gusev, N. B. (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20), Biochim. Biophys. Acta, 1794, 486-495, https://doi.org/10.1016/j.bbapap.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  49. Shatov, V. M., Strelkov, S. V., and Gusev, N. B. (2020) The Heterooligomerization of human small heat shock proteins is controlled by conserved motif located in the N-terminal domain, Int. J. Mol. Sci., 21, 4248, https://doi.org/10.3390/ijms21124248.

    Article  CAS  PubMed Central  Google Scholar 

  50. Pipkin, W., Johnson, J. A., Creazzo, T. L., Burch, J., Komalavilas, P., et al. (2003) Localization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart, Circulation, 107, 469-476, https://doi.org/10.1161/01.cir.0000044386.27444.5a.

    Article  CAS  PubMed  Google Scholar 

  51. Tyson, E. K., Macintyre, D. A., Smith, R., Chan, E. C., and Read, M. (2008) Evidence that a protein kinase A substrate, small heat-shock protein 20, modulates myometrial relaxation in human pregnancy, Endocrinology, 149, 6157-6165, https://doi.org/10.1210/en.2008-0593.

    Article  CAS  PubMed  Google Scholar 

  52. Vafiadaki, E., Arvanitis, D. A., Sanoudou, D., and Kranias, E. G. (2013) Identification of a protein phosphatase-1/phospholamban complex that is regulated by cAMP-dependent phosphorylation, PLoS One, 8, e80867, https://doi.org/10.1371/journal.pone.0080867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rembold, C. M., Foster, D. B., Strauss, J. D., Wingard, C. J., and Eyk, J. E. (2000) cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery, J. Physiol., 524 Pt 3, 865-878, https://doi.org/10.1111/j.1469-7793.2000.00865.x.

    Article  CAS  PubMed  Google Scholar 

  54. Brophy, C. M., Lamb, S., and Graham, A. (1999) The small heat shock-related protein-20 is an actin-associated protein, J. Vasc. Surg., 29, 326-333, https://doi.org/10.1016/s0741-5214(99)70385-x.

    Article  CAS  PubMed  Google Scholar 

  55. Tessier, D. J., Komalavilas, P., Panitch, A., Joshi, L., and Brophy, C. M. (2003) The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin, J. Surg. Res., 111, 152-157, https://doi.org/10.1016/s0022-4804(03)00113-6.

    Article  CAS  PubMed  Google Scholar 

  56. Meeks, M. K., Ripley, M. L., Jin, Z., and Rembold, C. M. (2005) Heat shock protein 20-mediated force suppression in forskolin-relaxed swine carotid artery, Am. J. Physiol. Cell Physiol., 288, C633-639, https://doi.org/10.1152/ajpcell.00269.2004.

    Article  CAS  PubMed  Google Scholar 

  57. Rembold, C. M. (2007) Force suppression and the crossbridge cycle in swine carotid artery, Am. J. Physiol. Cell Physiol., 293, C1003-1009, https://doi.org/10.1152/ajpcell.00091.2007.

    Article  CAS  PubMed  Google Scholar 

  58. Ba, M., Singer, C. A., Tyagi, M., Brophy, C., Baker, J. E., et al. (2009) HSP20 phosphorylation and airway smooth muscle relaxation, Cell Health Cytoskelet., 2009, 27-42, https://doi.org/10.2147/chc.s5783.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bukach, O. V., Marston, S. B., and Gusev, N. B. (2005) Small heat shock protein with apparent molecular mass 20 kDa (Hsp20, HspB6) is not a genuine actin-binding protein, J. Muscle Res. Cell Motil., 26, 175-181, https://doi.org/10.1007/s10974-005-9008-7.

    Article  CAS  PubMed  Google Scholar 

  60. Woodrum, D., Pipkin, W., Tessier, D., Komalavilas, P., and Brophy, C. M. (2003) Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation, J. Vasc. Surg., 37, 874-881, https://doi.org/10.1067/mva.2003.153.

    Article  PubMed  Google Scholar 

  61. Dreiza, C. M., Komalavilas, P., Furnish, E. J., Flynn, C. R., Sheller, M. R., et al. (2010) The small heat shock protein, HSPB6, in muscle function and disease, Cell Stress Chaperones, 15, 1-11, https://doi.org/10.1007/s12192-009-0127-8.

    Article  CAS  PubMed  Google Scholar 

  62. Dreiza, C. M., Brophy, C. M., Komalavilas, P., Furnish, E. J., Joshi, L., et al. (2005) Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics, FASEB J., 19, 261-263, https://doi.org/10.1096/fj.04-2911fje.

    Article  CAS  PubMed  Google Scholar 

  63. Chernik, I. S., Seit-Nebi, A. S., Marston, S. B., and Gusev, N. B. (2007) Small heat shock protein Hsp20 (HspB6) as a partner of 14-3-3gamma, Mol. Cell. Biochem., 295, 9-17, https://doi.org/10.1007/s11010-006-9266-8.

    Article  CAS  PubMed  Google Scholar 

  64. Sudnitsyna, M. V., Seit-Nebi, A. S., and Gusev, N. B. (2012) Cofilin weakly interacts with 14-3-3 and therefore can only indirectly participate in regulation of cell motility by small heat shock protein HspB6 (Hsp20), Arch. Biochem. Biophys., 521, 62-70, https://doi.org/10.1016/j.abb.2012.03.010.

    Article  CAS  PubMed  Google Scholar 

  65. Vafiadaki, E., Arvanitis, D. A., Eliopoulos, A. G., Kranias, E. G., and Sanoudou, D. (2020) The cardioprotective PKA-mediated Hsp20 phosphorylation modulates protein associations regulating cytoskeletal dynamics, Int. J. Mol. Sci., 21, 9572, https://doi.org/10.3390/ijms21249572.

    Article  CAS  PubMed Central  Google Scholar 

  66. Krief, S., Faivre, J. F., Robert, P., Le Douarin, B., Brument-Larignon, N., et al. (1999) Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues, J. Biol. Chem., 274, 36592-36600, https://doi.org/10.1074/jbc.274.51.36592.

    Article  CAS  PubMed  Google Scholar 

  67. Muranova, L. K., Shatov, V. M., Slushchev, A. V., and Gusev, N. B. (2021) Quaternary structure and hetero-oligomerization of recombinant human Small heat shock protein HspB7 (cvHsp), Int. J. Mol. Sci., 22, 7777, https://doi.org/10.3390/ijms22157777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, T., Mu, Y., Bogomolovas, J., Fang, X., Veevers, J., et al. (2017) HSPB7 is indispensable for heart development by modulating actin filament assembly, Proc. Natl. Acad. Sci. USA, 114, 11956-11961, https://doi.org/10.1073/pnas.1713763114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuld, J., Orfanos, Z., Chevessier, F., Eggers, B., Heil, L., et al. (2020) Homozygous expression of the myofibrillar myopathy-associated p. W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation, Acta Neuropathol. Commun., 8, 154, https://doi.org/10.1186/s40478-020-01001-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Juo, L. Y., Liao, W. C., Shih, Y. L., Yang, B. Y., Liu, A. B., et al. (2016) HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles, J. Cell Sci., 129, 1661-1670, https://doi.org/10.1242/jcs.179887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doran, P., Martin, G., Dowling, P., Jockusch, H., and Ohlendieck, K. (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP, Proteomics, 6, 4610-4621, https://doi.org/10.1002/pmic.200600082.

    Article  CAS  PubMed  Google Scholar 

  72. Lewis, C., Carberry, S., and Ohlendieck, K. (2009) Proteomic profiling of x-linked muscular dystrophy, J. Muscle Res. Cell Motil., 30, 267-269, https://doi.org/10.1007/s10974-009-9197-6.

    Article  CAS  PubMed  Google Scholar 

  73. Liao, W. C., Juo, L. Y., Shih, Y. L., Chen, Y. H., and Yan, Y. T. (2017) HSPB7 prevents cardiac conduction system defect through maintaining intercalated disc integrity, PLoS Genet., 13, e1006984, https://doi.org/10.1371/journal.pgen.1006984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mercer, E. J., Lin, Y. F., Cohen-Gould, L., and Evans, T. (2018) Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis, Dev. Biol., 435, 41-55, https://doi.org/10.1016/j.ydbio.2018.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doran, P., Gannon, J., O’Connell, K., and Ohlendieck, K. (2007) Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7, Eur. J. Cell Biol., 86, 629-640, https://doi.org/10.1016/j.ejcb.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  76. Acunzo, J., Katsogiannou, M., and Rocchi, P. (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death, Int. J. Biochem. Cell Biol., 44, 1622-1631, https://doi.org/10.1016/j.biocel.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  77. Shatov, V. M., Sluchanko, N. N., and Gusev, N. B. (2021) Replacement of Arg in the conserved N-terminal RLFDQxFG motif affects physico-chemical properties and chaperone-like activity of human small heat shock protein HspB8 (Hsp22), PLoS One, 16, e0253432, https://doi.org/10.1371/journal.pone.0253432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ke, L., Meijering, R. A., Hoogstra-Berends, F., Mackovicova, K., Vos, M. J., et al. (2011) HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes, PLoS One, 6, e20395, https://doi.org/10.1371/journal.pone.0020395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carra, S., Seguin, S. J., Lambert, H., and Landry, J. (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy, J. Biol. Chem., 283, 1437-1444, https://doi.org/10.1074/jbc.M706304200.

    Article  CAS  PubMed  Google Scholar 

  80. Fuchs, M., Poirier, D. J., Seguin, S. J., Lambert, H., Carra, S., et al. (2009) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction, Biochem. J., 425, 245-255, https://doi.org/10.1042/BJ20090907.

    Article  CAS  PubMed  Google Scholar 

  81. Shemetov, A. A., and Gusev, N. B. (2011) Biochemical characterization of small heat shock protein HspB8 (Hsp22)-Bag3 interaction, Arch. Biochem. Biophys., 513, 1-9, https://doi.org/10.1016/j.abb.2011.06.014.

    Article  CAS  PubMed  Google Scholar 

  82. Morelli, F. F., Mediani, L., Heldens, L., Bertacchini, J., Bigi, I., et al. (2017) An interaction study in mammalian cells demonstrates weak binding of HSPB2 to BAG3, which is regulated by HSPB3 and abrogated by HSPB8, Cell Stress Chaperones, 22, 531-540, https://doi.org/10.1007/s12192-017-0769-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rauch, J. N., Tse, E., Freilich, R., Mok, S. A., Makley, L. N., et al. (2017) BAG3 is a modular, scaffolding protein that physically links heat shock protein 70 (Hsp70) to the small heat shock proteins, J. Mol. Biol., 429, 128-141, https://doi.org/10.1016/j.jmb.2016.11.013.

    Article  CAS  PubMed  Google Scholar 

  84. Fontanella, B., Birolo, L., Infusini, G., Cirulli, C., Marzullo, L., et al. (2010) The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: New hints for actin folding, Int. J. Biochem. Cell Biol., 42, 641-650, https://doi.org/10.1016/j.biocel.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  85. Ulbricht, A., Gehlert, S., Leciejewski, B., Schiffer, T., Bloch, W., et al. (2015) Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle, Autophagy, 11, 538-546, https://doi.org/10.1080/15548627.2015.1017186.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ulbricht, A., Eppler, F. J., Tapia, V. E., van der Ven, P. F., Hampe, N., et al. (2013) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy, Curr. Biol., 23, 430-435, https://doi.org/10.1016/j.cub.2013.01.064.

    Article  CAS  PubMed  Google Scholar 

  87. Arndt, V., Dick, N., Tawo, R., Dreiseidler, M., Wenzel, D., et al. (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance, Curr. Biol., 20, 143-148, https://doi.org/10.1016/j.cub.2009.11.022.

    Article  CAS  PubMed  Google Scholar 

  88. Klimek, C., Jahnke, R., Wordehoff, J., Kathage, B., Stadel, D., et al. (2019) The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy, Biochim. Biophys.Acta, 1866, 1556-1566, https://doi.org/10.1016/j.bbamcr.2019.07.007.

    Article  CAS  Google Scholar 

  89. Fuchs, M., Luthold, C., Guilbert, S. M., Varlet, A. A., Lambert, H., et al. (2015) A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis, PLoS Genet., 11, e1005582, https://doi.org/10.1371/journal.pgen.1005582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Varlet, A. A., Fuchs, M., Luthold, C., Lambert, H., Landry, J., et al. (2017) Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division, Cell Stress Chaperones, 22, 553-567, https://doi.org/10.1007/s12192-017-0780-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luthold, C., Varlet, A. A., Lambert, H., Bordeleau, F., and Lavoie, J. N. (2020) Chaperone-assisted mitotic actin remodeling by BAG3 and HSPB8 involves the deacetylase HDAC6 and its substrate cortactin, Int. J. Mol. Sci., 22, 142, https://doi.org/10.3390/ijms22010142.

    Article  CAS  PubMed Central  Google Scholar 

  92. Luthold, C., Lambert, H., Guilbert, S. M., Rodrigue, M. A., Fuchs, M., et al. (2021) CDK1-mediated phosphorylation of BAG3 promotes mitotic cell shape remodeling and the molecular assembly of mitotic p62 bodies, Cells, 10, 2638, https://doi.org/10.3390/cells10102638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, W., Sun, X., Shi, X., Lai, L., Wang, C., et al. (2021) Hsp22 deficiency induces age-dependent cardiac dilation and dysfunction by impairing autophagy, metabolism, and oxidative response, Antioxidants, 10, 1550, https://doi.org/10.3390/antiox10101550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Year 2022 would be an 80-year anniversary of Andrei Dmitrievich Vinogradov, one of the leaders of national bioenergetics, brilliant lecturer, and critically thinking scientist. For 10 years, A. D. Vinogradov had been the Head of Department of Biochemistry and promoted investigations in the field of muscle biochemistry and proteostasis. The authors dedicate this review to the memory of this brilliant scientist.

Funding

This investigation was financially supported by the Russian Science Foundation (project no. 20-74-00013, L.K.M) and Interdisciplinary Scientific and Educational School of Moscow State University “Molecular Technologies of Living Systems and Synthetic Biology” (N.B.G.).

Author information

Authors and Affiliations

Authors

Contributions

L.K.M. drafted manuscript, V.M.S. drafted manuscript and prepared all figures, N.B.G. prepared and edited manuscript.

Corresponding author

Correspondence to Nikolai B. Gusev.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muranova, L.K., Shatov, V.M. & Gusev, N.B. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. Biochemistry Moscow 87, 800–811 (2022). https://doi.org/10.1134/S0006297922080119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080119

Keywords

Navigation