Skip to main content
Log in

The small heat shock protein, HSPB6, in muscle function and disease

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The small heat shock protein, HSPB6, is a 17-kDa protein that belongs to the small heat shock protein family. HSPB6 was identified in the mid-1990s when it was recognized as a by-product of the purification of HSPB1 and HSPB5. HSPB6 is highly and constitutively expressed in smooth, cardiac, and skeletal muscle and plays a role in muscle function. This review will focus on the physiologic and biochemical properties of HSPB6 in smooth, cardiac, and skeletal muscle; the putative mechanisms of action; and therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batts TW, Walker JS et al (2005) Absence of force suppression in rabbit bladder correlates with low expression of heat shock protein 20. BMC Physiol 5:16

    Article  PubMed  Google Scholar 

  • Beall A, Bagwell D et al (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 274(16):11344–11351

    Article  CAS  PubMed  Google Scholar 

  • Beall AC, Kato K et al (1997) Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem 272(17):11283–11287

    Article  CAS  PubMed  Google Scholar 

  • Bergh CM, Brophy CM et al (1995) Impaired cyclic nucleotide-dependent vasorelaxation in human umbilical artery smooth muscle. Am J Physiol 268(1 Pt 2):H202–H212

    CAS  PubMed  Google Scholar 

  • Birkenfeld J, Betz H et al (2003) Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta. Biochem J 369(Pt 1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Boluyt MO, Brevick JL et al (2006) Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. Proteomics 6(10):3154–3169

    Article  CAS  PubMed  Google Scholar 

  • Brophy CM, Beall A et al (1997) Small heat shock proteins and vasospasm in human umbilical artery smooth muscle. Biol Reprod 57(6):1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Brophy CM, Dickinson M et al (1999) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274(10):6324–6329

    Article  CAS  PubMed  Google Scholar 

  • Callaerts-Vegh Z, Evans KL et al (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci U S A 101(14):4948–4953

    Article  CAS  PubMed  Google Scholar 

  • Chernik IS, Seit-Nebi AS et al (2007) Small heat shock protein Hsp20 (HspB6) as a partner of 14-3-3 gamma. Mol Cell Biochem 295(1–2):9–17

    Article  CAS  PubMed  Google Scholar 

  • Chu G, Egnaczyk GF et al (2004) Phosphoproteome analysis of cardiomyocytes subjected to beta-adrenergic stimulation: identification and characterization of a cardiac heat shock protein p20. Circ Res 94(2):184–193

    Article  CAS  PubMed  Google Scholar 

  • Cross BE, O'Dea HM et al (2007) Expression of small heat shock-related protein 20 (HSP20) in rat myometrium is markedly decreased during late pregnancy and labour. Reproduction 133(4):807–817

    Article  CAS  PubMed  Google Scholar 

  • Dohke T, Wada A et al (2006) Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. J Card Fail 12(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Dreiza CM, Brophy CM et al (2005) Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. FASEB J 19(2):261–263

    CAS  PubMed  Google Scholar 

  • Duncan MR, Frazier KS et al (1999) Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 13(13):1774–1786

    CAS  PubMed  Google Scholar 

  • Fan GC, Chu G et al (2005a) Hsp20 and its cardioprotection. Trends Cardiovasc Med 15(4):138–141

    Article  CAS  Google Scholar 

  • Fan GC, Chu G et al (2004) Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res 94(11):1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Fan GC, Ren X et al (2005b) Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation 111(14):1792–1799

    Article  CAS  Google Scholar 

  • Flynn C, Smoke C et al (2007) In vivo activation of a transducible recombinant form of human HSP20 in Escherichia coli. Protein Expr Purif 52(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Flynn CR, Brophy CM et al (2005) Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle. J Appl Physiol 98:1836–1845

    Article  CAS  PubMed  Google Scholar 

  • Flynn CR, Komalavilas P et al (2003) Transduction of biologically active motifs of the small heat shock- related protein, HSP20, leads to relaxation of vascular smooth muscle. FASEB J 10:1358–1360

    Google Scholar 

  • Fontaine JM, Sun X et al (2005) Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337(3):1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Frobert O, Buus CL et al (2005) HSP20 phosphorylation and interstitial metabolites in hypoxia-induced dilation of swine coronary arteries. Acta Physiol Scand 184(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ranea JA, Mirey G et al (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529(2–3):162–177

    Article  CAS  PubMed  Google Scholar 

  • Gilmont RR, Somara S et al (2008) VIP induces PKA-mediated rapid and sustained phosphorylation of HSP20. Biochem Biophys Res Commun 375(4):552–556

    Article  CAS  PubMed  Google Scholar 

  • Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12(19):1704–1710

    Article  CAS  PubMed  Google Scholar 

  • Golenhofen N, Ness W et al (1998) Ischemia-induced phosphorylation and translocation of stress protein alpha B-crystallin to Z lines of myocardium. Am J Physiol 274(5 Pt 2):H1457–H1464

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Perng MD et al (2004) Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem Cell Biol 122(5):415–425

    Article  CAS  PubMed  Google Scholar 

  • Hakonarson H, Herrick DJ et al (1997) Autocrine role of interleukin 1beta in altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J Clin Invest 99(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Huey KA, Thresher JS et al (2004) Inactivity-induced modulation of Hsp20 and Hsp25 content in rat hindlimb muscles. Muscle Nerve 30(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Islamovic E, Duncan A et al (2007) Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. J Mol Cell Cardiol 42(4):862–869

    Article  CAS  PubMed  Google Scholar 

  • Israel E, Chinchilli VM et al (2004) Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364(9444):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Jerius H, Karolyi DR et al (1999) Endothelial-dependent vasodilation is associated with increases in the phosphorylation of a small heat shock protein (HSP20). J Vasc Surg 29(4):678–684

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Smith FD et al (2004) Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14(16):1436–1450

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Goto S et al (1994a) Purification and characterization of a 20-kDa protein that is highly homologous to alpha B crystallin. J Biol Chem 269(21):15302–15309

    CAS  Google Scholar 

  • Kato K, Hasegawa K et al (1994b) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269(15):11274–11278

    CAS  Google Scholar 

  • Komalavilas P, Penn RB et al (2008) The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation. Am J Physiol Lung Cell Mol Physiol 294(1):L69–L78

    Article  CAS  PubMed  Google Scholar 

  • Kothapalli DHN, Grotendorst GR (1998) Inhibition of TGF-beta-stimulated CTGF gene expression and anchorage-independent growth by cAMP identifies a CTGF-dependent restriction point in the cell cycle. FASEB J 12(12):1151–1161

    CAS  PubMed  Google Scholar 

  • Kozawa O, Matsuno H et al (2002) HSP20, low-molecular-weight heat shock-related protein, acts extracellularly as a regulator of platelet functions: a novel defense mechanism. Life Sci 72(2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(Pt 23):4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Lincoln TM (1989) cGMP and mechanisms of vasodilation. Pharmacol Ther 41:479–502

    Article  CAS  PubMed  Google Scholar 

  • Lincoln TM, Cornwell TL (1991) Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28(1–3):129–137

    CAS  PubMed  Google Scholar 

  • Lincoln TM, Cornwell TL et al (1996) Cyclic GMP-dependent protein kinase in nitric oxide signaling. Methods Enzymol 269:149–166

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Furnish EJ et al (2009) Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-beta1-induced CTGF expression in keloid fibroblasts. J Invest Dermatol 129(3):590–598

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre DA, Tyson EK et al (2008) Contraction in human myometrium is associated with changes in small heat shock proteins. Endocrinology 149(1):245–252

    Article  CAS  PubMed  Google Scholar 

  • Macomson SD, Brophy CM et al (2002) Heat shock protein expression in cerebral vessels after subarachnoid hemorrhage. Neurosurgery 51(1):204–210 discussion 210–211

    Article  PubMed  Google Scholar 

  • Matsuno HIA, Nakajima K, Kato K, Kozawa O (2003) A peptide isolated from alpha B-crystallin is a novel and potent inhibitor of platelet aggregation via dual prevention of PAR-1 and GPIb/V/IX. J Thromb Haemost 1(12):2636–2642

    Article  CAS  PubMed  Google Scholar 

  • Matsuno H, Kozawa O et al (1998) A heat shock-related protein, p20, plays an inhibitory role in platelet activation. FEBS Lett 429:327–329

    Article  CAS  PubMed  Google Scholar 

  • McLemore EC, Tessier DJ et al (2004) Transducible recombinant small heat shock-related protein, HSP20, inhibits vasospasm and platelet aggregation. Surgery 136(3):573–578

    Article  PubMed  Google Scholar 

  • Moore PE, Lahiri T et al (2001) Selected contribution: synergism between TNF-alpha and IL-1 beta in airway smooth muscle cells: implications for beta-adrenergic responsiveness. J Appl Physiol 91(3):1467–1474

    CAS  PubMed  Google Scholar 

  • Morton JP, Holloway K et al (2009) Exercise training-induced gender-specific heat shock protein adaptations in human skeletal muscle. Muscle Nerve 39(2):230–233

    Article  PubMed  Google Scholar 

  • Motojima S, Yukawa T et al (1989) Changes in airway responsiveness and beta- and alpha-1-adrenergic receptors in the lungs of guinea pigs with experimental asthma. Allergy 44(1):66–74

    Article  CAS  PubMed  Google Scholar 

  • Muehlich SCI, Garlichs CD, Krueger B, Posern G, Goppelt-Struebe M (2007) Actin-dependent regulation of connective tissue growth factor. Am J Physiol Cell Physiol 292(5):C1732–C1738

    Article  CAS  PubMed  Google Scholar 

  • Murray KJ (1990) Cyclic AMP and mechanisms of vasodilation. Pharmacol Ther 47(3):329–345

    Article  CAS  PubMed  Google Scholar 

  • Musialek P, Lei M et al (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 81(1):60–68

    CAS  PubMed  Google Scholar 

  • Ott C, Iwanciw D et al (2003) Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton. J Biol Chem 278(45):44305–44311

    Article  CAS  PubMed  Google Scholar 

  • Penn RB, Benovic JL (1998) Regulation of G protein-coupled receptors. In Handbook of physiology, section 7: endocrinology, volume 1: Cellular endocrinology. Edited by PM Conn. Oxford University Press. Oxford, U.K. Sect 7, vol 1, p 125–164

  • Piec I, Listrat A et al (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19(9):1143–1145

    CAS  PubMed  Google Scholar 

  • Pipkin W, Johnson JA et al (2003) Localization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart. Circulation 107(3):469–476

    Article  CAS  PubMed  Google Scholar 

  • Rembold CM, Foster DB et al (2000) cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J Physiol 524(Pt 3):865–878

    Article  CAS  PubMed  Google Scholar 

  • Rembold CM, O'Connor M et al (2001) Selected contribution: HSP20 phosphorylation in nitroglycerin- and forskolin-induced sustained reductions in swine carotid media tone. J Appl Physiol 91(3):1460–1466

    CAS  PubMed  Google Scholar 

  • Renowden S, Edwards DH et al (1992) Impaired cyclic nucleotide-mediated vasorelaxation may contribute to closure of the human umbilical artery after birth. Br J Pharmacol 106(2):348–353

    CAS  PubMed  Google Scholar 

  • Sakuma K, Watanabe K et al (1998) Pathological changes in levels of three small stress proteins, alphaB crystallin, HSP 27 and p20, in the hindlimb muscles of dy mouse. Biochim Biophys Acta 1406(2):162–168

    CAS  PubMed  Google Scholar 

  • Salinthone S, Tyagi M et al (2008) Small heat shock proteins in smooth muscle. Pharmacol Ther 119(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Santibanez JF, Olivares D et al (2003) Cyclic AMP inhibits TGFbeta1-induced cell-scattering and invasiveness in murine-transformed keratinocytes. Int J Cancer 107(5):715–720

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Welsh MJ, Benndorf R (2006) Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins—a two-hybrid study. Cell Stress Chaperones 11(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Tessier DJ, Komalavilas P et al (2004a) Transduction of peptide analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. J Vasc Surg 40(1):106–114

    Article  Google Scholar 

  • Tessier DJ, Komalavilas P et al (2004b) Sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of the heat shock-related protein 20 (HSP20). J Surg Res 118(1):21–25

    Article  CAS  Google Scholar 

  • Ungvari Z, Koller A (2001) Selected contribution: NO released to flow reduces myogenic tone of skeletal muscle arterioles by decreasing smooth muscle Ca(2+) sensitivity. J Appl Physiol 91(1):522–527 discussion 504–505

    CAS  PubMed  Google Scholar 

  • van de Klundert FA, de Jong WW (1999) The small heat shock proteins, Hsp20 and aB-crystallin in cultured cardiac myocytes: differences in cellular localization and solubilization after heat stress. Eur J Cell Biol 78:567–572

    PubMed  Google Scholar 

  • van de Klundert FA, Smulders RH et al (1998) The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem 258(3):1014–1021

    Article  PubMed  Google Scholar 

  • van de Klundert FAJM, van den IJssel PRLA et al (1999) Rat Hsp20 confers thermoresistance in a clonal survival assay, but fails to protect coexpressed luciferase in Chinese hamster ovary cells. Biochem Biophys Res Commun 254(1):164–168

    Article  Google Scholar 

  • Verschuure P, Croes Y et al (2002) Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol 34(2):117–128

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu A et al (1999a) Phosphorylation of P20 is associated with the actions of insulin in rat skeletal and smooth muscle. Biochem J 344:971–976

    Article  CAS  Google Scholar 

  • Wang Y, Xu A et al (1999b) Insulin and insulin antagonists evoke phosphorylation of P20 at serine 157 and serine 16 respectively in rat skeletal muscle. FEBS Lett 462(1–2):25–30

    Article  CAS  Google Scholar 

  • Woodrum D, Pipkin W et al (2003) Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation. J Vasc Surg 37:874–881

    Article  PubMed  Google Scholar 

  • Woodrum DA, Brophy CM et al (1999) Phosphorylation events associated with cyclic nucleotide-dependent inhibition of smooth muscle contraction. Am J Physiol 277(3 Pt 2):H931–H939

    CAS  PubMed  Google Scholar 

  • Zhu YH, Ma TM et al (2005) Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts. Acta Pharmacol Sin 26(10):1193–1200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health RO1HL58027 and RO1HL70715 and a Veterans Administration Merit Review award to C.M. Brophy.

Disclosures

The patents for the HSPB6 phosphopeptide are owned by Arizona State University and the Veteran's Administration. The intellectual property has been licensed to Capstone Therapeutics, Tempe, AZ, USA and the authors (C.D., P.K., E.F., C.F., M.S., and C.M.B.) have financial interest in this technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Dreiza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreiza, C.M., Komalavilas, P., Furnish, E.J. et al. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress and Chaperones 15, 1–11 (2010). https://doi.org/10.1007/s12192-009-0127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0127-8

Keywords

Navigation