Skip to main content
Log in

Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

ΔµH+ :

proton-motive force of transmembrane electrochemical transmembrane proton gradient

EP:

elementary particles

factor F1 :

cytoplasmic part of holocomplex F1FO

factor FO :

transmembrane part of holocomplex F1FO

factor V1 :

cytoplasmic part of holocomplex V1VO

factor VO :

transmembrane part of holocomplex V1VO

holocomplex F1FO :

F-ATPase/synthase of mitochondria/bacteria

holocomplex V1VO :

eukaryotic vacuolar adenosine triphosphatase (V-ATPase)

SMP:

submitochondrial particles

References

  1. Marshansky, V. (2007) The V-ATPase a2-subunit as a putative endosomal pH-sensor, Biochem. Soc. Trans., 35, 1092-1099, https://doi.org/10.1042/BST0351092.

    Article  CAS  PubMed  Google Scholar 

  2. Marshansky, V., and Futai, M. (2008) The V-type H(+)-ATPase in vesicular trafficking: targeting, regulation and function, Curr. Opin. Cell Biol., 20, 415-426, https://doi.org/10.1016/j.ceb.2008.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marshansky, V., Rubinstein, J. L., and Grüber, G. (2014) Eukaryotic V-ATPase: Novel structural findings and functional insights, Biochim. Biophys. Acta-Bioenergetics, 1837, 857-879, https://doi.org/10.1016/j.bbabio.2014.01.018.

    Article  CAS  Google Scholar 

  4. Marshansky, V., Futai, M., and Grüber, G. (2016) Eukaryotic V-ATPase and its super-complexes: from structure and function to disease and drug targeting, in Advances in Biochemistry in Health and Disease: Regulation of Ca2+-ATPases, V-ATPases and F-ATPases (Chakraborti, S., and Dhalla, N. S., eds) Springer International Publishing, Switzerland, pp. 301-335.

  5. Muench, S. P., Trinick, J., and Harrison, M. A. (2011) Structural divergence of the rotary ATPases, Q. Rev. Biophys., 44, 311-356, https://doi.org/10.1017/S0033583510000338.

    Article  CAS  PubMed  Google Scholar 

  6. Engelhardt, W. A. (1930) Pyrophosphate metabolism in avian erythorocytes, Klein. Wochenschr., 9, 1550-1554.

    Article  CAS  Google Scholar 

  7. Engelhardt, W. A. (1930) Ortho- and pyrophosphate in aerobic and anaerobic metabolism of erythrocytes, Biochem. Zeitschrift, 227, 16-38.

    CAS  Google Scholar 

  8. Engelhardt, W. A. (1932) Correlation between respiration and conversion of pyrophosphate in avian erythrocytes, Biochem. Zeitschrift, 251, 343-368.

    CAS  Google Scholar 

  9. Engelhardt, W. A. (1982) Life and science, Annu. Rev. Biochem., 51, 1-19, https://doi.org/10.1146/annurev.bi.51.070182.000245.

    Article  CAS  PubMed  Google Scholar 

  10. Krogh, A. (1929) The progress of physiology, Am. J. Physiol., 90, 243-251.

    Article  Google Scholar 

  11. Engelhardt, W. A., and Lyubimova, M. N. (1939) Myosin and adenosine triphosphatase, Nature, 144, 668-669.

    Article  CAS  Google Scholar 

  12. Engelgardt, V. A. (1984) Knowledge of the Phenomenon of Life [in Russian] (Baev, A. A., ed.) Akademia Nauk SSSR, Moscow.

  13. Belitser, V. A., and Tsybakova, E. T. (1939) On mechanism of phosphorylation couples with respiration, Biokhimiya, 4, 516-535.

    Google Scholar 

  14. Skulachev, V. P. (1972) Solution of the problem of energy coupling in terms of chemiosmotic theory, J. Bioenerg., 3, 25-38, https://doi.org/10.1007/BF01515994.

    Article  CAS  PubMed  Google Scholar 

  15. Skulachev, V. P. (1974) Enzymic generators of membrane potential in mitochondria, Ann. N. Y. Acad. Sci., 227, 188-202, https://doi.org/10.1111/j.1749-6632.1974.tb14384.x.

    Article  CAS  PubMed  Google Scholar 

  16. Skulachev, V. P. (1974) Mechanism of oxidative phosphorylation and general principles of bioenergetics, Usp. Sovrem. Biol., 77, 125-154.

    CAS  PubMed  Google Scholar 

  17. Skulachev, V. P. (1977) Adenosine triphosphate and transmembrane potential of hydrogen ions: Converting forms of energy of live cells, Usp. Sovrem. Biol., 84, 165-175.

    CAS  PubMed  Google Scholar 

  18. Skulachev, V. P. (1979) Membrane potential and reconstitution, Methods Enzymol., 55, 586-603, https://doi.org/10.1016/0076-6879(79)55068-x.

    Article  CAS  PubMed  Google Scholar 

  19. Skulachev, V. P. (1982) Rasskazy o bioenergetike. Uchebnoye posobiye (Stories about bioenergetics. Tutorial book), Moscow: Molodaya Gvardiya.

  20. Skulachev, V. P. (1989) Bioenergetics. Membrane Transformers of Energy [in Russian], Vysshaya Shkola, Moscow.

  21. Skulachev, V. P. (1988) Membrane Bioenergetics, Springer Verlag, Berlin, New York, https://doi.org/10.1007/978-3-642-72978-2.

  22. Skulachev, V. P. (1994) Chemiosmotic concept of the membrane bioenergetics: what is already clear and what is still waiting for elucidation?, J. Bioenerg. Biomembr., 26, 589-598, https://doi.org/10.1007/BF00831533.

    Article  CAS  PubMed  Google Scholar 

  23. Skulachev, V. P., Bogachev, A. V., and Kasparinskii, F. O. (2010) Membrane Bioenergetics. Tutorial Book [in Russian], Izdatelstvo Moskovskogo Universiteta, Moscow.

  24. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 91, 144-148, https://doi.org/10.1038/191144a0.

    Article  Google Scholar 

  25. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Camb. Philos. Soc., 41, 445-502, https://doi.org/10.1111/j.1469-185x.1966.tb01501.x.

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell, P., and Moyle, J. (1967) Chemiosmotic hypothesis of oxidative phosphorylation, Nature, 213, 137-139, https://doi.org/10.1038/213137a0.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell, P., and Moyle, J. (1971) Activation and inhibition of mitochondrial adenosine triphosphatase by various anions and other agents, J. Bioenerg., 2, 1-11, https://doi.org/10.1007/BF01521319.

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell, P. (1972) Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge, J. Bioenerg., 3, 5-24, https://doi.org/10.1007/BF01515993.

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell, P. (1976) Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity, Biochem. Soc. Trans., 4, 399-430, https://doi.org/10.1042/bst0040399.

    Article  CAS  PubMed  Google Scholar 

  30. Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Proton conductors in the respiratory chain and artificial membranes, Nature, 216, 718-719, https://doi.org/10.1038/216718a0.

    Article  CAS  PubMed  Google Scholar 

  31. Skulachev, V. P., Sharaf, A. A., Yagujzinsky, L. S., Jasaitis, A. A., Liberman, E. A., et al. (1968) The effect of uncouplers on mitochondria, respiratory enzyme complexes and artificial phospholipid membranes, Curr. Mod. Biol., 2, 98-105, https://doi.org/10.1016/0303-2647(68)90014-2.

    Article  CAS  PubMed  Google Scholar 

  32. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Yasaitis, A. A., and Skulachev, V. P. (1969) Ion transport and electrical potential of mitochondrial membranes, Biokhimiya, 34, 1083-1087.

    CAS  Google Scholar 

  33. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.

    Article  CAS  PubMed  Google Scholar 

  34. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., et al. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  35. Drachev, L. A., Jasaitis, A. A., Mikelsaar, H., Nemecek, I. B., Semenov, A. Y., et al. (1976) Reconstitution of biological molecular generators of electric current H+-ATPase, J. Biol. Chem., 251, 7077-7082, https://doi.org/10.1016/S0021-9258(17)32943-5.

    Article  CAS  PubMed  Google Scholar 

  36. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

    CAS  Google Scholar 

  37. Skulachev, M. V., and Skulachev, V. P. (2015) Phenoptosis-programmed death of an organism, in Apoptosis and Beyong (Radosevich, J., ed.) Springer-Verlag, Berlin, Heidelberg.

  38. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, https://doi.org/10.1134/S000629791712001X.

    Article  CAS  Google Scholar 

  39. Vyssokikh, M. Y., Holtze, S., Averina, O. A., Lyamzaev, K. G., Panteleeva, A. A., et al. (2020) Mild depolarization of the inner mitochondrial membrane is a crusial component of an anti-aging program, Proc. Natl. Acad. Sci. USA, 117, 6491-6501, https://doi.org/10.1073/pnas.1916414117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skulachev, M., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., et al. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800-826, https://doi.org/10.2174/138945011795528859.

    Article  CAS  PubMed  Google Scholar 

  41. Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-relatedbbrain diseases, J. Alzheimer’s Dis., 28, 283-289, https://doi.org/10.3233/JAD-2011-111391.

    Article  CAS  Google Scholar 

  42. Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorove, L. D., Manskikh, V. N., et al. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection, Proc. Natl. Acad. Sci. USA, 110, E3100-E3108, https://doi.org/10.1073/pnas.1307096110.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Skulachev, V. P., Skulachev, M, V., and Fenyuk, B. A. (2016) Life without Aging: Popular Illustrated Publication [in Russian], Eksmo, Moscow.

  44. Boyer, P. D. (1997) The ATP synthase-a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749, https://doi.org/10.1146/annurev.biochem.66.1.717.

    Article  CAS  PubMed  Google Scholar 

  45. Boyer, P. D. (1998) ATP synthase-past and future, Biochim. Biophys. Acta, 1365, 3-9, https://doi.org/10.1016/s0005-2728(98)00066-8.

    Article  CAS  PubMed  Google Scholar 

  46. Pullman, M. E., Penefsky, H. S., Datta, A., and Racker, E. (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase, J. Biol. Chem., 235, 3322-3329.

    Article  CAS  Google Scholar 

  47. Penefsky, H. S., Pullman, M. E., Datta, A., and Racker, E. (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation, J. Biol. Chem., 235, 3330-3336.

    Article  CAS  Google Scholar 

  48. Racker, E. (1962) Studies of factors involved in oxidative phosphorylation, Proc. Natl. Acad. Sci. USA, 48, 1659-1663, https://doi.org/10.1073/pnas.48.9.1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Racker, E. (1964) A reconstituted system of oxidative phosphorylation, Biochem. Biophys. Res. Commun., 14, 75-78, https://doi.org/10.1016/0006-291x(63)90214-6.

    Article  CAS  PubMed  Google Scholar 

  50. Racker, E. (1977) Mechanisms of energy transformations, Annu. Rev. Biochem., 46, 1006-1014, https://doi.org/10.1146/annurev.bi.46.070177.005042.

    Article  CAS  PubMed  Google Scholar 

  51. Racker, E., Violand, B., O’Neal, S., Alfonzo, M., and Telford, J. (1979) Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes, Arch. Biochem. Biophys., 198, 470-477, https://doi.org/10.1016/0003-9861(79)90521-6.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Moran, H. (1963) Subunit organization of mitochondrial membranes, Science, 140, 381, https://doi.org/10.1126/science.140.3565.381.

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez-Moran, H., Oda, T., Blair, P. V., and Green, D. E. (1964) A macromolecular repeating unit of mitochondrial structure and function. Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle, J. Cell Biol., 22, 63-100, https://doi.org/10.1083/jcb.22.1.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Webster, G., and Green, D. E. (1964) The enzymes and the enzyme-catalyzed reactions of mitochondrial oxidative phosphorylation, Proc. Natl. Acad. Sci. USA, 52, 1170-1176, https://doi.org/10.1073/pnas.52.5.1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chance, B., and Parsons, D. F. (1963) Cytochrome function in relation to inner membrane structure of mitochondria, Science, 142, 1176-1180, https://doi.org/10.1126/science.142.3596.1176.

    Article  CAS  PubMed  Google Scholar 

  56. Stasny, J. T., and Crane, F. L. (1964) Separation of elementary particles from mitochondrial cristae, Exp. Cell Res., 34, 423-426, https://doi.org/10.1016/0014-4827(64)90382-9.

    Article  CAS  PubMed  Google Scholar 

  57. Stasny, J. T., and Crane, F. L. (1964) The effect of sonic oscillation on the structure and function of beef heart mitochondria, J. Cell. Biol., 22, 49-62, https://doi.org/10.1083/jcb.22.1.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moyle, J., and Mitchell, P. (1975) Active/inactive state transitions of mitochondrial ATPase molecules influenced by Mg+, anions and aurovertin, FEBS Lett., 56, 55-61, https://doi.org/10.1016/0014-5793(75)80110-4.

    Article  CAS  PubMed  Google Scholar 

  59. Recktenwald, D., and Hess, B. (1977) A slow conformation change in the transient state kinetics of soluble ATPase of yeast mitochondria, FEBS Lett., 80, 187-189, https://doi.org/10.1016/0014-5793(77)80436-5.

    Article  CAS  PubMed  Google Scholar 

  60. Vinogradov, A. D. (1984) Catalytic properties of mitochondrial ATP-synthase, Biokhimiya, 49, 1220-1238.

    CAS  Google Scholar 

  61. Vinogradov, A. D. (1999) Mitochondrial ATP-synthase: fifteen years later, Biochemistry (Moscow), 64, 1219-1229.

    CAS  Google Scholar 

  62. Vinogradov, A. D. (2000) Steady-state and pre-steady-state kinetics of the mitochondrial FoF1 ATPase: is ATP synthase a reversible molecular machine?, J. Exp. Biol., 203, 41-49, https://doi.org/10.1242/jeb.203.1.41.

    Article  CAS  PubMed  Google Scholar 

  63. Vinogradov, A. D. (2019) New Perspective on the reversibility of ATP synthesis and hydrolysis by FoF1-ATP synthase (hydrolase), Biochemistry (Moscow), 84, 1247-1255, https://doi.org/10.1134/s0006297919110038.

    Article  CAS  Google Scholar 

  64. Akimenko, V. K., Minkov, I. B., and Vinogradov, A. D. (1971) On effects of uncouplers on the soluble ATPase of mitochondria, Biokhimiya, 36, 655-658.

    CAS  Google Scholar 

  65. Akimenko, V. K., Minkov, I. B., Bakeeva, L. E., and Vinogradov, A. D. (1972) Isolation and properties of soluble ATPase from bovine heart mitochondria, Biokhimiya, 37, 348-359.

    CAS  Google Scholar 

  66. Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979) An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitohondrial particles, Biochem. Biophys. Res. Commun., 86, 434-439, https://doi.org/10.1016/0006-291x(79)90884-2.

    Article  CAS  PubMed  Google Scholar 

  67. Minkov, I. B., Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979) Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1, Biochem. Biophys. Res. Commun., 89, 1300-1306, https://doi.org/10.1016/0006-291x(79)92150-8.

    Article  CAS  PubMed  Google Scholar 

  68. Vasilyeva, E. A., Fitin, A. F., Minkov, I. B., and Vinogradov, A. D. (1980) Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles, Biochem. J., 188, 807-815, https://doi.org/10.1042/bj1880807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vasilyeva, E. A., Minkov, I. B., Fitin, A. F., and Vinogradov, A. D. (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics, Biochem. J., 202, 9-14, https://doi.org/10.1042/bj2020009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulygin, V. V., Syroeshkin, A. V., and Vinogradov, A. D. (1993) Nucleotide/H(+)-dependent change in Mg2+ affinity at the inhibitory site of the mitochondrial F1-Fo ATP synthase, FEBS Lett., 328, 193-196, https://doi.org/10.1016/0014-5793(93)80991-3.

    Article  CAS  PubMed  Google Scholar 

  71. Vasilyeva, E. A., Minkov, I. B., Fitin, A. F., and Vinogradov, A. D. (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite, Biochem. J., 202, 15-23, https://doi.org/10.1042/bj2020015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Galkin, M. A., and Vinogradov, A. D. (1999) Energy-dependent transformation of the catalytic activities of the mitochondrial FoF1-ATP synthase, FEBS Lett., 448, 123-126, https://doi.org/10.1016/s0014-5793(99)00347-6.

    Article  CAS  PubMed  Google Scholar 

  73. Minkov, I. B., and Vinogradov, A. D. (1973) Isolation and properties of a mitochondrial protein inhibiting adenosine triphosphatase, Biokhimiya, 38, 542-547.

    CAS  Google Scholar 

  74. Panchenko, M. V., and Vinogradov, A. D. (1989) Kinetics of interaction of submitochondrial fragments of ATPase with protein inhibitor, Biokhimiya, 54, 569-579.

    CAS  Google Scholar 

  75. Panchenko, M. V., and Vinogradov, A. D. (1985) Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. Active/inactive slow pH-dependent transitions of the inhibitor protein, FEBS Lett., 184, 226-230, https://doi.org/10.1016/0014-5793(85)80611-6.

    Article  CAS  PubMed  Google Scholar 

  76. Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., et al. (1998) V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP, J. Biol. Chem., 273, 20504-20510, https://doi.org/10.1074/jbc.273.32.20504.

    Article  CAS  PubMed  Google Scholar 

  77. Dempsey, M. E., and Boyer, P. D. (1961) Catalysis of an inorganic phosphate-H2O18 exchange by actomysin and myosin, J. Biol. Chem., 236, PC6-PC7.

    Article  CAS  Google Scholar 

  78. Repke, K. R., and Schön, R. (1974) Flip-flop model of energy interconversion by ATP synthase, Acta Biol. Med. Ger., 33, K27-K38.

    CAS  PubMed  Google Scholar 

  79. Boyer, P. D. (1975) Energy transduction and proton translocation by adenosine triphosphatases, FEBS Lett., 5, 91-94, https://doi.org/10.1016/0014-5793(75)80464-9.

    Article  Google Scholar 

  80. Smith, D. J., and Boyer, P. D. (1976) Demonstration of a transitory tight binding of ATP and of committed P(i) and ADP during ATP synthesis by chloroplasts, Proc. Natl. Acad. Sci. USA, 73, 4314-4318, https://doi.org/10.1073/pnas.73.12.4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rosing, J., Kayalar, C., and Boyer, P. D. (1977) Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges, J. Biol. Chem., 252, 2478-2485.

    Article  CAS  Google Scholar 

  82. Kayalar, C., Rosing, J., and Boyer, P. D. (1977) An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions, J. Biol. Chem., 252, 2486-2491, https://doi.org/10.1016/S0021-9258(17)40484-4.

    Article  CAS  PubMed  Google Scholar 

  83. Boyer, P.D. (1993) The binding change mechanism for ATP synthase-some probabilities and possibilities, Biochim. Biophys. Acta, 1140, 215-250, https://doi.org/10.1016/0005-2728(93)90063-l.

    Article  CAS  PubMed  Google Scholar 

  84. Boyer, P. D. (2000) Catalytic site forms and controls in ATP synthase catalysis, Biochim. Biophys. Acta, 1458, 252-262, https://doi.org/10.1016/s0005-2728(00)00077-3.

    Article  CAS  PubMed  Google Scholar 

  85. Boyer, P. D. (2002) Catalytic site occupancy during ATP synthase catalysis, FEBS Lett., 512, 29-32, https://doi.org/10.1016/s0014-5793(02)02293-7.

    Article  CAS  PubMed  Google Scholar 

  86. Lutter, R., Abrahams, J. P., van Raaij, M. J., Todd, R. J., Lundqvist, T., et al. (1993) Crystallization of F1-ATPase from bovine heart mitochondria, J. Mol. Biol., 229, 787-790, https://doi.org/10.1006/jmbi.1993.1081.

    Article  CAS  PubMed  Google Scholar 

  87. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature, 370, 621-628, https://doi.org/10.1038/370621a0.

    Article  CAS  PubMed  Google Scholar 

  88. Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., et al. (1977) Oxidative phosphorylation and photophosphorylation, Annu. Rev. Biochem., 46, 955-1026, https://doi.org/10.1146/annurev.bi.46.070177.004515.

    Article  CAS  PubMed  Google Scholar 

  89. Stock, D., Leslie, A. G., and Walker, J. E. (1999) Molecular architecture of the rotary motor in ATP synthase, Science, 286, 1700-1705, https://doi.org/10.1126/science.286.5445.1700.

    Article  CAS  PubMed  Google Scholar 

  90. Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, Biochem. Soc. Trans., 41, 1-16, https://doi.org/10.1042/BST20110773.

    Article  CAS  PubMed  Google Scholar 

  91. Guo, H., Bueler, S. A., and Rubinstein, J. L. (2017) Atomic model for the dimeric Fo region of mitochondrial ATP synthase, Science, 358, 936-940, https://doi.org/10.1126/science.aao4815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo, H., Suzuki, T., and Rubinstein, J. L. (2019) Structure of a bacterial ATP synthase, eLife, 8, e43128, https://doi.org/10.7554/eLife.43128.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Murphy, B. J., Klusch, N., Langer, J., Mills, D. J., Yildiz, Ö., et al. (2019) Rotary substrates of mitochondrial ATP synthase reveal the basis of flexible F1-FO coupling, Science, 364, eaaw9128, https://doi.org/10.1126/science.aaw9128.

    Article  CAS  PubMed  Google Scholar 

  94. Kühlbrandt, W. (2019) Structure and mechanisms of F-type ATP synthases, Annu. Rev. Biochem., 88, 515-549, https://doi.org/10.1146/annurev-biochem-013118-110903.

    Article  CAS  PubMed  Google Scholar 

  95. Wagner, C. A., Finberg, K. E., Breton, S., Marshansky, V., Brown, D., et al. (2004) Renal vacuolar H+-ATPase, Physiol. Rev., 84, 1263-1314, https://doi.org/10.1152/physrev.00045.2003.

    Article  CAS  PubMed  Google Scholar 

  96. Brown, D., and Marshansky, V. (2004) The renal V-ATPase: physiology and pathophysiology, in Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology (Futai, M., Wada, Y., and Kaplan, J., eds) Wiley-VCH, pp. 413-442.

  97. Beyenbach, K. W., and Wieczorek, H. (2006) The V-type H+-ATPase: molecular structure and function, physiological roles and regulation, J. Exp. Biol., 209, 577-589, https://doi.org/10.1242/jeb.02014.

    Article  CAS  PubMed  Google Scholar 

  98. Forgac, M. (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology, Nat. Rev. Mol. Cell Biol., 8, 917-929, https://doi.org/10.1038/nrm2272.

    Article  CAS  PubMed  Google Scholar 

  99. Kirshner, N. (1962) Uptake of catecholamines by a particular fraction of the adrenal medulla, J. Biol. Chem., 237, 2311-2317.

    Article  CAS  Google Scholar 

  100. Kirshner, N., Kirshner, A. G., and Kamin, D. L. (1966) Adenosine triphosphotase activity of adrenal medulla catecholamine granules, Biochim. Biophys. Acta, 113, 332-335, https://doi.org/10.1016/s0926-6593(66)80072-3.

    Article  CAS  PubMed  Google Scholar 

  101. Bashford, C. L., Casey, R. P., Radda, G. K., and Ritchie, G. A. (1975) The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules, Biochem. J., 148, 153-155, https://doi.org/10.1042/bj1480153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kanner, B. I., and Schuldner, S. (1987) Mechanism of transport and storage of neurotransmitters, CRC Crit. Rev. Biochem., 22, 1-38, https://doi.org/10.3109/10409238709082546.

    Article  CAS  PubMed  Google Scholar 

  103. Kakinuma, Y., Ohsumi, Y., and Anraku, Y. (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem., 256, 10859-10863.

    Article  CAS  Google Scholar 

  104. Bowman, E. J., and Bowman, B. J. (1982) Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa, J. Bacteriol., 151, 1326–1337, https://doi.org/10.1128/jb.151.3.1326-1337.1982.

    Article  PubMed Central  Google Scholar 

  105. Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D. (1983) Clathrin-coated vesicles contain an ATP-dependent proton pump, Proc. Natl. Acad. Sci. USA, 80, 1300-1303, https://doi.org/10.1073/pnas.80.5.1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harikumar, P., and Reeves, J. P. (1983) The lysosomal proton pump is electrogenic, J. Biol. Chem., 258, 10403-10410.

    Article  CAS  Google Scholar 

  107. Nelson, N., and Harvey, W. R. (1999) Vacuolar and plasma membrane proton adenosinetriphosphatases, Physiol. Rev., 79, 361-385, https://doi.org/10.1152/physrev.1999.79.2.361.

    Article  CAS  PubMed  Google Scholar 

  108. Anderson, E., and Harvey, W. R. (1966) Active transport by the cecropia midgut. II. Fine structure of the midgut epithelium, J. Cell Biol., 31, 107-134, https://doi.org/10.1083/jcb.31.1.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berridge, M. J., and Gupta, B. L. (1968) Fine-structural localization of adenosine triphosphatase in the rectum of Caliphora, J. Cell Sci., 3, 17-31, https://doi.org/10.1242/jcs.3.1.17.

    Article  CAS  PubMed  Google Scholar 

  110. Brown, D., and Montesano, R. (1980) Membrane specialization in the rat epididymis. I. Rod-shaped intramembrane particles in the apical (mitochondria-rich) cell, J. Cell. Sci., 45, 187-198, https://doi.org/10.1242/jcs.45.1.187.

    Article  CAS  PubMed  Google Scholar 

  111. Brown, D., and Montesano, R. (1981) Membrane specialization in the rat epididymis. II. The clear cell, Anat. Rec., 201, 477-483, https://doi.org/10.1002/ar.1092010305.

    Article  CAS  PubMed  Google Scholar 

  112. Brown, D., and Orci, L. (1986) The “coat” of kidney intercalated cell tubulovesicles does not contain clathrin, Am. J. Physiol. Cell. Physiol., 250, C605-C608, https://doi.org/10.1152/ajpcell.1986.250.4.C605.

    Article  CAS  Google Scholar 

  113. Brown, D., Weyer, P., and Orci, L. (1987) Nonclathrin-coated vesicles are involved in endocytosis in kidney collecting dusct intercalated cells, Anat. Rec., 218, 237-242, https://doi.org/10.1002/ar.1092180303.

    Article  CAS  PubMed  Google Scholar 

  114. Brown, D., Gluck, S., and Hartwig, J. (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ ATPase, J. Cell Biol., 105, 1637-1648, https://doi.org/10.1083/jcb.105.4.1637.

    Article  CAS  PubMed  Google Scholar 

  115. Brown, D., Hirsch, S., and Gluck, S. (1988) An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations, Nature, 331, 622-624, https://doi.org/10.1038/331622a0.

    Article  CAS  PubMed  Google Scholar 

  116. Brown, D., Hirsch, S., and Gluck, S. (1988) Localization of a proton-pumping ATPase in rat kidney, J. Clin. Invest., 82, 2114-2126, https://doi.org/10.1172/JCI113833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Breton, S., Smith, P., Lui, B., and Brown, D. (1996) Acidification of male reproductive tract by a proton pumping H+ ATPase, Nat. Med., 2, 470-472, https://doi.org/10.1038/nm0496-470.

    Article  CAS  PubMed  Google Scholar 

  118. Brown, D., and Breton, S. (1996) Mitochondria-rich, proton-secreting epithelial cells, J. Exp. Biol., 199, 2345-2358, https://doi.org/10.1242/jeb.199.11.2345.

    Article  CAS  PubMed  Google Scholar 

  119. Brown, D., and Breton, S. (2000) H+ V-ATPase-dependent luminal acidification in the kidney collecting duct and the epididymis/vas deferens: vesicle recycling and transcytotic pathways, J. Exp. Biol., 203, 137-145, https://doi.org/10.1242/jeb.203.1.137.

    Article  CAS  PubMed  Google Scholar 

  120. Brown, D., and Breton, S. (2007) New insights into the regulation of V-ATPase-dependent proton secretion, Am. J. Physiol. Renal Physiol., 292, F1-F10, https://doi.org/10.1152/ajprenal.00340.2006.

    Article  CAS  PubMed  Google Scholar 

  121. Brown, D., Paunescu, T. G., Breton, S., and Marshansky, V. (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking, J. Exp. Biol., 212, 1762-1772, https://doi.org/10.1242/jeb.028803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brown, D., Breton, S., Ausiello, D. A., and Marshansky, V. (2009) Sensing, signaling and sorting events in kidney epithelial cell physiology, Traffic, 10, 275-284, https://doi.org/10.1111/j.1600-0854.2008.00867.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eaton, A.F., Merkulova, M., and Brown, D. (2021) The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease, Am. J. Physiol. Cell Physiol., 320, C392-C414. doi:10.1152/ajpcell.00442.2020.

    Article  CAS  Google Scholar 

  124. Harvey, W. R., Cioffi, M., and Wolfersberger, M. G. (1981) Portasomes as coupling factors in active transport and oxidative phosphorylation, Am. Zool., 21, 775-791.

    Article  CAS  Google Scholar 

  125. Harvey, W. R., Cioffi, M., and Wolfersberger, M. G. (1983) Chemiosmotic potassium ion pump of insect epithelia, Am. J. Physiol., 244, R163-R175, https://doi.org/10.1152/ajpregu.1983.244.2.R163.

    Article  CAS  PubMed  Google Scholar 

  126. Harvey, W. R., Cioffi, M., Dow, J. A. T., and Wolfersberger, M. G. (1983) Potassium ion transport ATPase in insect epithelia, J. Exp. Biol., 106, 91-117, https://doi.org/10.1242/jeb.106.1.91.

    Article  CAS  PubMed  Google Scholar 

  127. Schweikl, H., Klein, U., Schindlbeck, M., and Wieczorek, H. (1989) A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut, J. Biol. Chem., 264, 11136-11142.

    Article  CAS  Google Scholar 

  128. Harvey, W. R., and Wieczorek, H. (1997) Animal plasma membrane energization by chemiosmotic H+ V-ATPases, J. Exp. Biol., 200, 203-216, https://doi.org/10.1242/jeb.200.2.203.

    Article  CAS  PubMed  Google Scholar 

  129. Marshansky, V., Fleser, A., Noël, J., Bourgoin, S., and Vinay, P. (1996) Isolation of heavy endosomes from proximal dog proximal tubules in suspension, J. Membr. Biol., 153, 59-73, https://doi.org/10.1007/s002329900110.

    Article  CAS  PubMed  Google Scholar 

  130. Marshansky, V., and Vinay, P. (1996) Proton gradient formation in early endosomes from proximal tubules, Biochim. Biophys. Acta Biomembr., 1284, 171-180, https://doi.org/10.1016/s0005-2736(96)00123-x.

    Article  Google Scholar 

  131. Marshansky, V., Bourgoin, S., Londoño, I., Bendayan, M., Maranda, B., et al. (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis, Electrophoresis, 18, 2661-2676, https://doi.org/10.1002/elps.1150181423.

    Article  CAS  PubMed  Google Scholar 

  132. Maranda, B., Brown, D., Bourgoin, S., Casanova, J. E., Vinay, P., et al. (2001) Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes, J. Biol. Chem., 276, 18540-18550, https://doi.org/10.1074/jbc.M011577200.

    Article  CAS  PubMed  Google Scholar 

  133. Marshansky, V., Ausiello, D. A., and Brown, D. (2002) Physiological importance endosomal acidification: potential role in proximal tubulopathies, Curr. Opin. Nephrol. Hypertens., 11, 527-537, https://doi.org/10.1097/00041552-200209000-00009.

    Article  PubMed  Google Scholar 

  134. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483-485, https://doi.org/10.1016/0968-0004(84)90317-7.

    Article  CAS  Google Scholar 

  135. Skulachev, V. P. (1985) Membrane linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion, Eur. J. Biochem., 151, 199-208, https://doi.org/10.1111/j.1432-1033.1985.tb09088.x.

    Article  CAS  PubMed  Google Scholar 

  136. Unemoto, T., Hayashi, M., and Hayashi, M. (1977) Na+-dependent activation of NADH oxidase in membrane fractions from halophilic Vibrio alginolyticus and V. costicolus, J. Biochem., 82, 1389-1395, https://doi.org/10.1093/oxfordjournals.jbchem.a131826.

    Article  CAS  PubMed  Google Scholar 

  137. Unemoto, T., and Hayashi, M. (1979) NADH: quinone oxidoreductase as a site of Na+-dependent activation in the respiratory chain of marine Vibrio alginolyticus, J. Biochem., 85, 1461-1467, https://doi.org/10.1093/oxfordjournals.jbchem.a132474.

    Article  CAS  PubMed  Google Scholar 

  138. Tokuda, H., and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus, J. Biol. Chem., 257, 10007-10014.

    Article  CAS  Google Scholar 

  139. Tokuda, H. (1984) Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus, FEBS Lett., 176, 125-128, https://doi.org/10.1016/0014-5793(84)80925-4.

    Article  CAS  PubMed  Google Scholar 

  140. Dibrov, P. A., Kostryko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986) The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant Vibrio alginolyticus, Biochim. Biophys. Acta, 850, 449-457, https://doi.org/10.1016/0005-2728(86)90113-1.

    Article  CAS  PubMed  Google Scholar 

  141. Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1986) The sodium cycle. II. Na+ coupled oxidative phosphorylation in Vibrio alginolyticus cells, Biochim. Biophys. Acta, 850, 458-465, https://doi.org/10.1016/0005-2728(86)90114-3.

    Article  CAS  PubMed  Google Scholar 

  142. Bakeeva, L. E., Chumakov, K. M., Drachev, A. L., Meltina, A. L., and Skulachev, V. P. (1986) The sodium cycle. III. Vibrio alginolyticus resembles Vibrio cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures, Biochim. Biophys. Acta, 850, 466-472, https://doi.org/10.1016/0005-2728(86)90115-5.

    Article  CAS  PubMed  Google Scholar 

  143. Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate, FEBS Lett., 122, 234-236, https://doi.org/10.1016/0014-5793(80)80446-7.

    Article  CAS  PubMed  Google Scholar 

  144. Hilpert, W., and Dimroth, P. (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient, Nature, 296, 584-585, https://doi.org/10.1038/296584a0.

    Article  CAS  PubMed  Google Scholar 

  145. Hilpert, W., Schink, B., and Dimroth, P. (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na as coupling ion, EMBO J., 3, 1665-1670, https://doi.org/10.1002/j.1460-2075.1984.tb02030.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Skulachev, V. P. (1991) Chemiosmotic systems in bioenergetics: H+-cycles and Na+-cycles, Biosci. Rep., 11, 387-441, https://doi.org/10.1007/BF01130214.

    Article  CAS  PubMed  Google Scholar 

  147. Skulachev, V. P. (1989) The sodium cycle: a novel type of bacterial energetics, J. Bioenerg. Biomemb., 21, 635-647, https://doi.org/10.1007/BF00762683.

    Article  CAS  Google Scholar 

  148. Skulachev, V. P. (1989) Bacterial Na+ energetics, FEBS Lett., 250, 106-114, https://doi.org/10.1016/0014-5793(89)80693-3.

    Article  CAS  PubMed  Google Scholar 

  149. Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases, Nat. Rev.Microbiol., 5, 892-899, https://doi.org/10.1038/nrmicro1767.

    Article  CAS  PubMed  Google Scholar 

  150. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, Biol. Direct, 3, 13. https://doi.org/10.1186/1745-6150-3-13.

    Article  Google Scholar 

  151. Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985-992, https://doi.org/10.1016/j.bbabio.2008.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mulkidjanian, A. Y., Galperin, M. Y., and Koonin, E. V. (2009) Co-evolution of primordial membranes and membrane proteins, Trends Biochem. Sci., 34, 206-215, https://doi.org/10.1016/j.tibs.2009.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl. Acad. Sci. USA, 109, E821-E830, https://doi.org/10.1073/pnas.1117774109.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kozlova, M. I., Bushmakin, I. M., Belyaeva, J. D., Shalaeva, D. N., Didrova, D. V., et al. (2020) Expansion of the “sodium world” through evolutionary time and taxonomic space, Biochemistry (Moscow), 85, 1518-1542, https://doi.org/10.1134/S0006297920120056.

    Article  CAS  Google Scholar 

  155. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., et al. (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes, Proc. Natl. Acad. Sci. USA, 86, 6661-6665, https://doi.org/10.1073/pnas.86.17.6661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., et al. (2016) The physiology and habitat of the last universal common ancestor, Nat. Microbiol., 1, 16116, https://doi.org/10.1038/nmicrobiol.2016.116.

    Article  CAS  PubMed  Google Scholar 

  157. McInerney, J. O. (2016) Evolution: A four billion year old metabolism, Nat. Microbiol., 1, 16139, https://doi.org/10.1038/nmicrobiol.2016.139.

    Article  CAS  PubMed  Google Scholar 

  158. Weiss, M. C., Preiner, M., Xavier, J. C., Zimorski, V., and Martin, W. F. (2018) The last universal common ancestor between ancient Earth chemistry and the onset of genetics, PLoS Genet., 14, e1007518, https://doi.org/10.1371/journal.pgen.1007518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kagawa, Y., and Racker, E. (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem., 246, 5477-5487, https://doi.org/10.1016/S0021-9258(18)61930-1.

    Article  CAS  Google Scholar 

  160. Racker, E., and Stoeckenius, W. (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem., 249, 662-663, https://doi.org/10.1016/S0021-9258(19)43080-9.

    Article  CAS  PubMed  Google Scholar 

  161. Mitchell, P. (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966, Biochim. Biophys. Acta, 1807, 1507-1538, https://doi.org/10.1016/j.bbabio.2011.09.018.

    Article  CAS  PubMed  Google Scholar 

  162. Glagolev, A. N., and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria, Nature, 272, 280-282, https://doi.org/10.1038/272280a0.

    Article  CAS  PubMed  Google Scholar 

  163. Junge, W. (1999) ATP synthase and other motor proteins, Proc. Natl. Acad. Sci. USA, 96, 4735-4737, https://doi.org/10.1073/pnas.96.9.4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dimroth, P., Wang, H., Grabe, M., and Oster, G. (1999) Energy transduction in the sodium F-ATPase of Propionigenium modestum, Proc. Natl. Acad. Sci. USA, 96, 4924-4929, https://doi.org/10.1073/pnas.96.9.4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae, Science, 308, 654-659, https://doi.org/10.1126/science.1110064.

    Article  CAS  PubMed  Google Scholar 

  166. Meier, T., Polzer, P., Diederichs, K., Welte, W., and Dimroth, P. (2005) Structure of the rotor ring of the F-type Na+-ATPase from Llyobacter tartaricus, Science, 308, 659-662, https://doi.org/10.1126/science.1111199.

    Article  CAS  PubMed  Google Scholar 

  167. Wilkens, S. (2005) Rotary molecular motors, Adv. Protein Chem., 71, 345-382, https://doi.org/10.1016/S0065-3233(04)71009-8.

    Article  CAS  PubMed  Google Scholar 

  168. Kühlbrandt, W. (2014) The resolution revolution, Science, 343, 1443-1444, https://doi.org/10.1126/science.1251652.

    Article  PubMed  Google Scholar 

  169. Smith, M. T., and Rubinstein, J. L. (2014) Structural biology. Beyond blob-ology, Science, 345, 617-619, https://doi.org/10.1126/science.1256358.

    Article  CAS  PubMed  Google Scholar 

  170. Guo, H., and Rubinstein, J. R. (2018) Cryo-EM of ATP synthases, Curr. Opin. Struct. Biol., 52, 71-79, https://doi.org/10.1016/j.sbi.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  171. Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V., and Rubinstein, J. L. (2020) Structure of V-ATPase from the mammalian brain, Science, 367, 1240-1246, https://doi.org/10.1126/science.aaz2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Vasanthakumar, T., and Rubinstein, J. L. (2020) Structure and roles of V-type ATPases, Trends. Biochem. Sci., 45, 295-307, https://doi.org/10.1016/j.tibs.2019.12.007.

    Article  CAS  PubMed  Google Scholar 

  173. Oot, R. A., Couoh-Cardel, S., Sharma, S., Stam, N. J., and Wilkens, S. (2017) Breaking up and making up: the secret life of the vacuolar H+-ATPase, Protein Sci., 26, 896-909, https://doi.org/10.1002/pro.3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Roh, S.-H., Stam, N. J., Hryc, C. F., Couoh-Cardel, S., Pintilie, G., et al. (2018) The 3.5 Å cryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo proton channel, Mol. Cell, 69, 993-1004, https://doi.org/10.1016/j.molcel.2018.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Oot, R. A., Yao, Y., Manolson, M. F., and Wilkens, S. (2021) Purification of active human vacuolar H+-ATPase in native lipid-containing nanodiscs, J. Biol. Chem., 297, 100964, https://doi.org/10.1016/j.jbc.2021.100964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yasuda, R., Noji, H., Kinosita, K. Jr., Motojima, F., and Yoshida, M. (1997) Rotation of the gamma subunit in F1-ATPase; evidence that ATP synthase is a rotary motor enzyme, J. Bioenerg. Biomembr., 29, 207-209, https://doi.org/10.1023/a:1022449708449.

    Article  CAS  PubMed  Google Scholar 

  177. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr. (1997) Direct observation of the rotation of F1-ATPase, Nature, 386, 299-302, https://doi.org/10.1038/386299a0.

    Article  CAS  PubMed  Google Scholar 

  178. Noji, H., Häsler, K., Junge, W., Kinosita, K. Jr., Yoshida, M., et al. (1999) Rotation of Escherichia coli F(1)-ATPase, Biochem. Biophys. Res. Commun., 260, 597-599, https://doi.org/10.1006/bbrc.1999.0885.

    Article  CAS  PubMed  Google Scholar 

  179. Omote, H., Sambonmatsu, N., Saito, K., Sambongi, Y., Iwamoto-Kihara, A., et al. (1999) The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli, Proc. Natl. Acad. Sci. USA, 96, 7780-7784, https://doi.org/10.1073/pnas.96.14.7780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., et al. (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (FoF1): direct observation, Science, 286, 1722-1724, https://doi.org/10.1126/science.286.5445.1722.

    Article  CAS  PubMed  Google Scholar 

  181. Futai, M., Omote, H., Sambongi, Y., and Wada, Y. (2000) ATP synthase (H+ ATPase): coupling between catalysis, mechanical work, and proton translocation, Biochim. Biophys. Acta, 1458, 276-288, https://doi.org/10.1016/s0005-2728(00)00080-3.

    Article  CAS  PubMed  Google Scholar 

  182. Tanabe, M., Nishio, K., Iko, Y., Sambongi, Y., Iwamoto-Kihara, A., et al. (2001) Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable, J. Biol. Chem., 276, 15269-15274, https://doi.org/10.1074/jbc.M100289200.

    Article  CAS  PubMed  Google Scholar 

  183. Nishio, K., Iwamoto-Kihara, A., Yamamoto, A., Wada, Y., and Futai, M. (2002) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring, Proc. Natl. Acad. Sci. USA, 99, 13448-13452, https://doi.org/10.1073/pnas.202149599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., et al. (2006) Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: The epsilon subunit-sensitive rotation, J. Biol. Chem., 281, 4126-4131, https://doi.org/10.1074/jbc.M510090200.

    Article  CAS  PubMed  Google Scholar 

  185. Futai, M. (2006) Our research on proton pumping ATPases over three decades: their biochemistry, molecular biology and cell biology, Proc. Japan Acad. Sci., 82, 416-438, https://doi.org/10.2183/pjab.82.416.

    Article  CAS  Google Scholar 

  186. Nakanishi-Matsui, M., and Futai, M. (2006) Stochastic proton pumping ATPases: from single molecules to diverse physiological roles, IUBMB Life, 58, 318-322, https://doi.org/10.1080/15216540600702255.

    Article  CAS  PubMed  Google Scholar 

  187. Nakanishi-Matsui, M., Sekiya, M., and Futai, M. (2013) Rotating proton pumping ATPases: Subunit/subunit interactions and thermodynamics, IUBMB Life, 65, 247-254, https://doi.org/10.1002/iub.1134.

    Article  CAS  PubMed  Google Scholar 

  188. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okijama, T., Wada, Y., et al. (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and c-subunits, J. Biol. Chem., 278, 23714-23719, https://doi.org/10.1074/jbc.M302756200.

    Article  CAS  PubMed  Google Scholar 

  189. Sun-Wada, G.H., Wada, Y., and Futai, M. (2003) Vacuolar H+ pumping ATPases in luminal acidic organelles and extracellular compartments: common rotational mechanism and diverse physiological roles, J. Bioenerg. Biomembr., 35, 347-358, https://doi.org/10.1023/a:1025780932403.

    Article  CAS  PubMed  Google Scholar 

  190. Futai, M., Sun-Wada, G. H., and Wada, Y. (2004) Proton translocating ATPases: introducing unique enzymes coupling catalysis and proton translocation through mechanical rotation, in Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology (Futai, M., Wada, Y., and Kaplan, J. H., eds) Wiley–VCH, Weinheim, pp. 237-260.

  191. Futai, M., Nakanishi-Matsui, M., Okamoto, H., Sekiya, M., and Nakamoto, R. K. (2012) Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase, Biochim. Biophys. Acta, 1817, 1711-1721, https://doi.org/10.1016/j.bbabio.2012.03.015.

    Article  CAS  PubMed  Google Scholar 

  192. Futai, M., Sun-Wada, G.-H., Wada, Y., Matsumoto, N., and Nakanishi-Matsui, M. (2019) Vacuolar-type ATPase: a proton pump to lysosomal trafficking, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 95, 261-277, https://doi.org/10.2183/pjab.95.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Junge, W., Lill, H., and Engelbrecht, S. (1997) ATP synthase: an electrochemical transducer with rotatory mechanics, Trends Biochem. Sci., 22, 420-423, https://doi.org/10.1016/s0968-0004(97)01129-8.

    Article  CAS  PubMed  Google Scholar 

  194. Yoshida, M., Muneyuki, E., and Hisabori, T. (2001) ATP synthase – a marvellous rotary engine of the cell, Nat. Rev. Mol. Cell Biol., 2, 669-677, https://doi.org/10.1038/35089509.

    Article  CAS  PubMed  Google Scholar 

  195. Junge, W., and Nelson, N. (2005) Structural biology. Nature’s rotary electromotors, Science, 308, 642-644, https://doi.org/10.1126/science.1112617.

    Article  CAS  PubMed  Google Scholar 

  196. Hurtado-Lorenzo, A., El Annan, J., Bechoua, S., Futai, M., Bourgoin, S., et al. (2003) V-type ATPase as a possible pH-sensing protein: a2-subunit of V-ATPase localizes in endosomes and interacts with ARNO in kidney proximal tubules, Mol. Biol. Cell, 14, 237a-238a.

    Google Scholar 

  197. Hurtado-Lorenzo, A., El Annan, J., Futai, M., Bourgoin, S., Casanova, J., et al. (2004) The V-ATPase is a pH sensor: novel role in vesicular trafficking, Mol. Biol. Cell, 15, 345.

    Article  Google Scholar 

  198. Hurtado-Lorenzo, A., Skinner, M., El Annan, J., Futai, M., Sun-Wada, G. H., et al. (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway, Nat. Cell Biol., 8, 124-136, https://doi.org/10.1038/ncb1348.

    Article  CAS  PubMed  Google Scholar 

  199. Recchi, C., and Chavrier, P. (2006) V-ATPase: a potential pH sensor, Nat. Cell Biol., 8, 107-109, https://doi.org/10.1038/ncb0206-107.

    Article  CAS  PubMed  Google Scholar 

  200. Hurtado-Lorenzo, A., Skinner, M., El Annan, J., Futai, M., Sun-Wada, G.-H., et al. (2006) Novel role of V-ATPase in regulation of protein degradation pathway, Abstract: “20th IUBMB International Congress of Biochemistry and Molecular Biology and 11th FAOBMB Congress” (Kyoto, Japan), 447.

  201. Hosokawa, H., Dip, P. H., Merkulova, M., Bakulina, A., Zhuang, Z., et al. (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2, J. Biol. Chem., 288, 5896-5913, https://doi.org/10.1074/jbc.M112.409169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Marshansky, V., Hosokawa, H., Merkulova, M., Bakulina, A., Dip, P. V., et al. (2019) Structural model of a2-subunit N-terminus and its binding interface for Arf-GEF CTH2: Implication for regulation of V-ATPase, CTH2 funtion and rational drug design, Curr. Top. Membr., 83, 77-106, https://doi.org/10.1016/bs.ctm.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Marshansky.

Ethics declarations

The author declares no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshansky, V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. Biochemistry Moscow 87, 702–719 (2022). https://doi.org/10.1134/S000629792208003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792208003X

Keywords

Navigation