Skip to main content
Log in

Cyanidiales as Polyextreme Eukaryotes

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

HGT:

horizontal gene transfer

References

  1. Seckbach, J. (2010) Overview of Cyanidian Biology, in Red Algae in the Genomic Age (Seckbach, J., and Chapman, D. J. eds.) Springer, N.Y., pp. 345-356.

  2. Sentsova, O. Yu. (1991) On the diversity of acido-thermophilic unicellular algae of the genus Galdieria (Rhodophyta, Cyanidiophyceae), Botanichesky J., 76, 69-79.

    Google Scholar 

  3. Sentsova, O. Yu. (1994) The Study of Cyanidiophyceae in Russia. Algae of Genus Galdieria: Diversity, Characterization and Occurrence in Mixed Populations with Cyanidium caldarium, in Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells (Seckbach, J., ed.) Kluwer, Dordrecht, pp. 167-174.

  4. Stadnichuk, I. N., and Kuznetsov, V. V. (2021) Endosymbiotic origin of chloroplasts in plant cells evolution, Rus. J. Plant Physiol., 68, 1-16.

    Article  CAS  Google Scholar 

  5. Bhattacharya, D., Qiu, H., Lee, J. M., Yoon, H. S., Weber, A. P. N., et al. (2018) When less is more: Red algae as models for studying gene loss and genome evolution in eukaryotes, Crit. Rev. Plant Sci., 37, 81-99.

    Article  Google Scholar 

  6. Miyagishima, S., and Tanaka, K. (2021) The unicellular red alga Cyanidioschyzon merolae – the simplest model of a photosynthetic eukaryote, Plant Cell Physiol., 62, 926-941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto, G., Ciniglia, C., Cascone, C., and Pollio, A. (2007) Species Composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and Description of Galdieria phlegrea sp. nov., in Algae and Cyanobacteria in Extreme Environments (Seckbach, J., ed.) pp. 488-501.

  8. Allen, M. A. (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte, Arch. Mikrobiol., 32, 270-277.

    Article  CAS  PubMed  Google Scholar 

  9. Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musachio, A., et al. (1981) Revision of Cyanidium caldarium. Three species of acidophilic algae, Giorn. Bot. Ital., 115, 189-195.

    Article  Google Scholar 

  10. De Luca, P., Taddei, R., and Varano, L. (1978) ‘Cyanidioschyzon merolae’: A new alga of thermal acidic environments, Webbia, 33, 37-44.

    Article  Google Scholar 

  11. Barcytė, D., Nedbalová, L., Culka, A., Košek, F., and Jehlička, J. (2018) Burning coal spoil heaps as a new habitat for the extremophilic red alga Galdieria sulphuraria, Fottea (Olomouc), 18, 19-29.

    Article  Google Scholar 

  12. Liu, S.-L., Chiang, Y.-R., Yoon, H. S., and Fu, H.-Y. (2020) Comparative genome analysis reveals Cyanidiococcus gen. nov., a new extremophilic red algal genus sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta), J. Phycol., 56, 1428-1442.

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-Baracaldo, P., Raven, J. A., Pisani, D., Knoll, A. H. (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats, Proc. Natl. Acad. Sci. USA, 114, e7737.

    PubMed  PubMed Central  Google Scholar 

  14. Donoghue, P., and Paps, J. (2020) Plant evolution: Assembling land plants, Curr. Biol., 30, R81-R83.

    Article  CAS  PubMed  Google Scholar 

  15. Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., and Bhattacharya, D. (2006) Defining the major lineages of red algae (Rhodophyta), J. Phycol., 42, 482-492.

    Article  CAS  Google Scholar 

  16. Jong, L. W., Fujiwara, T., Hirooka, S., and Miyagishima, S. Y. (2021) Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae, Protoplasma, https://doi.org/10.1007/s00709-021-01628-y.

    Article  PubMed  Google Scholar 

  17. Guo, L., and Yang, G. (2015) Predicting the reproduction strategies of several microalgae through their genome sequences, J. Ocean Univ. China, 14, 491-502.

    Article  CAS  Google Scholar 

  18. Sedova, T. V. (1996) Karyology of Algae, Nauka, SPb, 386 p.

  19. Muravenko, O., Selyakh, I., Kononenko, N., and Stadnichuk, I. (2001) Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdieria species, Eur. J. Phycol., 36, 227-232.

    Article  Google Scholar 

  20. Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M., et al. (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae, BMC Biol., 5, 28, https://doi.org/10.1186/1741-7007-5-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiu, H., Price, D. C., Yang, E. C., Yoon, H. S., and Bhattacharya, D. (2015) Evidence of ancient genome reduction in red algae (Rhodophyta), J. Phycol., 51, 624-636.

    Article  CAS  PubMed  Google Scholar 

  22. Ternes, C. M., and Schönknecht, G. (2014) Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes, Genome Biol. Evol., 6, 2335-2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohnuma, M., Misumi, O., Fujiwara, T., Watanabe, S., Tanaka, K., et al. (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D, Protoplasma, 236, 107-112.

    Article  CAS  PubMed  Google Scholar 

  24. Poverennaya, I. V., and Roitberg, M. A. (2020) Spliceosomal introns: properties, functions, and evolution, Biochemistry (Moscow), 85, 725-734.

    Article  CAS  Google Scholar 

  25. Schönknecht, G., Weber, A. P. M., and Lercher, M. J. (2014) Horizontal gene acquisition by eukaryotes as drives of adaptive evolution, BioEsssays, 36, 9-20.

    Article  CAS  Google Scholar 

  26. Ye, J., Rensing, C., Rosen, B. P., and Zhu, Y.-G. (2017) Arsenic biomethylation by photosynthetic organisms, Trends Plant Sci., 17, 155-161.

    Article  CAS  Google Scholar 

  27. Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., et al. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae, Plant Physiol., 137, 460-474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jain, K., Krause, K., Grewe, F., Gaven, F., Nelson, G. F., et al. (2015) Extreme features of the Galdieria sulphuraria organellar genomes: A consequence of polyextremophily? Genome Biol. Evol., 7, 367-380.

    Article  CAS  Google Scholar 

  29. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., et al. (2008) Cell proliferation at 122°C and isotopically heavy methane under high-pressure cultivation, Proc. Natl. Acad. Sci. USA, 105, 10949-10954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rahman, D. Y., Sarian, F. D., van Wijk, A., Martinez-Garcia, M., van der Maarel, M. J. E. C. (2016) Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant, J. Appl. Phycol., 29, 1233-1239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ferraro, G., Imbimbo, P., Marseglia, A., Lucignano, R., Monti, D. M., et al. (2020) X-ray structure of C-phycocyanin from Galdieria phlegrea: Determinants of thermostability and comparison with a C-phycocyanin in the entire phycobilisome, Biochim. Biophys. Acta, 1861, 148236, https://doi.org/10.1016/j.bbabio.2020.148236.

    Article  CAS  Google Scholar 

  32. Carfagna, S., Landi, V., Coraggio, F., Salbitani, G., Vona, V., et al. (2018) Different characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea, Algal Res., 31, 406-412.

    Article  Google Scholar 

  33. Ferris, M. J., Sheehan, B., Kühl, M., Cooksey, K., Wigglesworth-Cooksey, B., et al. (2005) Algal species and light microenvironment in a low-pH, geothermal microbial mat community, Appl. Environ. Microbiol., 71, 7164-7171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikolova, D., Weber, D., Scholz, M., Bald, T., Scharsack, J. P., et al. (2017) Temperature induced remodeling of the photosynthetic machinery tunes photosynthesis in a thermophyllic alga, Plant Physiol., 174, 35-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossoni, A. W., Schönknecht, G., Lee, H. J., and Lupp, R. L. (2019) Cold acclimation of the thermoacidophilic red alga Galdieria sulphuraria – changes in gene expression and involvement of horizontally acquired genes, Plant Cell Physiol., 60, 702-712.

    Article  CAS  PubMed  Google Scholar 

  36. Beardal, J., and Entwisle, L. (1984) Internal pH of the obligate acidophile Cyanidium caldarium Geitler (Rhodophyta?), Phycologia, 23, 397-399.

    Article  Google Scholar 

  37. Bethmann, B., Schönknecht, G. (2009) pH regulation in an acidophilic green alga – a quantitative analysis, New Phytologist, 183, 327-339.

    Article  CAS  PubMed  Google Scholar 

  38. Raven, J. A., and Beardall, J. (2020) Energizing the plasmalemma of marine photosynthetic organisms: the role of primary active transport, J. Mar. Biol. Ass.UK, 100, 333-346.

    Article  CAS  Google Scholar 

  39. Gimmler H. (2001) Acidophilic and Acidotolerant Algae, in Algal adaptation to Environmental Stresses (Rai, L. C., et al., eds.) Springer-Verlag, Berlin Heidelberg, pp. 259-290.

  40. Kaplan, D. (2013) Absorption and Adsorption of Heavy Metals by Microalgae, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology (Richmond, A., and Hu, Q., eds.) Blackwell Publishing Ltd, Second Edn., pp. 602-611.

  41. Nagasaka, S., Nishizawa, N. K., Watanabe, T., Mori, S., and Yoshimura, E. (2004) Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance, Biometals, 17, 177-181.

    Article  CAS  PubMed  Google Scholar 

  42. Edwards, C. D., Beatty, J. C., Loiselle, J. B., Vlassov, K. A., and Lefebvre, D. D. (2013) Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms, BMC Microbiol., 13, 161, https://doi.org/10.1186/1471-2180-13-161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, C., Maratukulam, P., Lum, A., Clark, D., and Keasling, J. (2000) Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface, Appl. Environ. Microbiol., 66, 4497-4502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshimura, E., Nagasaka, S., Satake, K., and Mori, S. (2000) Mechanism of aluminium tolerance in Cyanidium caldarium, Hydrobiologia, 433, 57-60.

    Article  CAS  Google Scholar 

  45. Padisák, J., and Naselli-Flores, L. (2021) Phytoplankton in extreme environments: importance and consequences of habitat permanency, Hydrobiologia, 848, 157-176.

    Article  CAS  Google Scholar 

  46. Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D, Nature, 428, 653-657.

    Article  CAS  PubMed  Google Scholar 

  47. Raven, J. A., Ball, L. A., Beardall, J., Giordano, M., and Maberly, S. C. (2005) Algae lacking carbon-concentrating mechanisms, Can. J. Bot., 83, 879-890.

    Article  CAS  Google Scholar 

  48. Parys, E., Krupnik, T., Kułak, I., Kania, K., and Romanowska, E. (2021) Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light, Photosynth. Res., 147, 61-73.

    Article  CAS  PubMed  Google Scholar 

  49. Uemura, K., Anwaruzzaman, Miyachi, S., and Yokota, A. (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation, Biochem. Biophys. Res. Commun., 233, 568-571.

    Article  CAS  PubMed  Google Scholar 

  50. Eisenhut, M., Hocken, N., and Weber, A. P. M. (2015) Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism, Cell Calcium, 58, 98-104.

    Article  CAS  PubMed  Google Scholar 

  51. Rademacher, N., Kern, R., Fujiwara, T., Mettler-Altmann, T., Miyagishima, S.-Ya., et al. (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions, J. Exp. Bot., 67, 3165-3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gross, W., and Schnarrenberger, C. (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria, Plant Cell Physiol., 36, 633-648.

    CAS  Google Scholar 

  53. Stadnichuk, I. N., Semenova, L. R., Rakhimberdieva, M. G., Tropin, I. V., and Usov, A. I. (2006) The regulatory role of glucose and light in the heterotrophic growth of the thermoacidophilic red microalga Galdieria. II International Symposium “Plant cell signaling systems: role in adaptation and immunity”, 113-114, Kazan.

  54. Tischendorf, G., Oesterhelt, C., Hoffmann, S., Girnus, J., Schnarrenberger, C., et al. (2007) Ultrastructure and enzyme complement of proplastids from heterotrophically grown cells of the red alga Galdieria sulphuraria, Eur. J. Phycol., 42, 243-251.

    Article  CAS  Google Scholar 

  55. Graverholt, O. S., Eriksen, N. T. (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin, Appl Microbiol. Biotechnol., 77, 69-75.

    Article  CAS  PubMed  Google Scholar 

  56. Fujiwara, T., Hirooka, S., Mukai, M., Ohbayashi, R., Kanesaki, Yu, et al. (2019) Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae, Plant Direct, 3, e00134, https://doi.org/10.1002/pld3.134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ternes, C. M. (2015) Metabolic evolution in Galdieria sulphuraria, Dissertation for the Degree of Dr. Philosophy. Oklahoma Univ. USA.

  58. Weber, A. P. M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L. A., et al. (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts, Plant Mol. Biol., 55, 17-32.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, J., Ghosh, S., and Saier, Jr, M. H. (2017) Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria and Cyanidioschyzon merolae, J. Phycol., 53, 503-521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moriyama, T., Mori, N., and Sato, N. (2015) Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: Evidence for heterotrophic growth, SpringerPlus, 4, 559, https://doi.org/10.1186/s40064-015-1365-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Selosse, M.-A., Charpin, M., and Not, F. (2017) Mixotrophy everywhere on land and in water: the grand écart hypothesis, Ecol. Lett., 20, 246-263.

    Article  PubMed  Google Scholar 

  62. Stadnichuk, I. N., Semenova, L. R., Smirnova, G. P., and Usov, A. I. (2007) A highly branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima cells, Appl. Biochem. Microbiol., 43, 88-93.

    Article  CAS  Google Scholar 

  63. Sakurai, T., Aoki, M., Ju, X., Ueda, T., Nakamura, Y., et al. (2016) Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria, Biores. Technol., 200, 861-866.

    Article  CAS  Google Scholar 

  64. Graziani, G., Schiavo, S., and Nicolai, M. A. (2013) Microalgae as human food: Chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria, Food Funct., 1, 144-152.

    Article  Google Scholar 

  65. Sinetova, M. P., Markelova, A. G., and Los, A. D. (2006) The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria, Rus. J. Plant Physiol., 53, 153-162.

    Article  CAS  Google Scholar 

  66. Takusagawa, M., Nakajima, Y., Saito, T., and Misumi, O. (2016) Primitive red alga Cyanidioschyzon merolae accumulates storage glucan and triacylglycerol under nitrogen depletion, J. Gen. Appl. Microbiol., 62, 111-117.

    Article  CAS  PubMed  Google Scholar 

  67. Patron, N. J., Keeling, P. J. (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae, J. Phycol., 41, 1131-1141.

    Article  CAS  Google Scholar 

  68. Martinez-Garcia, M., Stuart, M. C. A., and Van der Maarel, M. J. E. C. (2016) Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens, Int. J. Biol. Macromol., 89, 12-18.

    Article  CAS  PubMed  Google Scholar 

  69. Pade, N., Linka, N., Ruth, W., Weber, A. P., and Hagemann, M. (2015) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria, New Phytol., 205, 1227-1238.

    Article  CAS  PubMed  Google Scholar 

  70. Gorshkova, T. A. (2007) The Plant Cell Wall as a Dynamic System, Nauka, Moscow, 426 p.

  71. Popper, Z. A., Michel, G., Herve, C., Domozych, D. S., Willats, W. G. T., et al. (2011) Evolution and diversity of plant cell walls: from algae to flowering plants, Ann. Rev. Plant Biol., 62, 567-590.

    Article  CAS  Google Scholar 

  72. Ohnuma, M., Misumi, O., and Kuroiwa, T. (2011) Phototaxis in the unicellular red algae Cyanidioschyzon merolae and Cyanidium caldarium, Cytologia, 76, 295-300.

    Article  Google Scholar 

  73. Niklas, K. J. (2004) The cell walls that bind the tree of life, BioScience, 54, 831-841.

    Article  Google Scholar 

  74. Bailey, R. W. (1968) The chemical composition of isolated cell walls of Cyanidium caldarium, J. Gen. Microbiol., 54, 269-276.

    Article  CAS  PubMed  Google Scholar 

  75. Oesterhelt, C., Vogelbein, S., Shrestha, R. P., Stanke, M., and Weber, A. P. M. (2008) The genome of the thermoacidophilic red microalga Galdieria sulphuraria encodes a small family of secreted class III peroxidases that might be involved in cell wall modification, Planta, 227, 353-362.

    Article  CAS  PubMed  Google Scholar 

  76. Allen, C. F., Good, P., and Holton, R. W. (1970) Lipid composition of Cyanidium, Plant Physiol., 46, 748-751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lang, I., Hodac, L., Friedl, T., and Feussner, I. (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection, BMC Plant Biol., 11, 124, https://doi.org/10.1186/1471-2229-11-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sato, N., and Moriyama, T. (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis, Eukaryotic Cell, 6, 1006-1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vίtová, M., Goecke, F., Sigler, R., and Řezanka, T. (2016) Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH, Algal Res., 13, 218-226.

    Article  Google Scholar 

  80. Bendall, D. S., Howe, C. J., Nisbet, E. G., and Nisbet, R. E. (2008) Photosynthetic and atmospheric evolution, Philos. Trans. R. Soc. Lond. B Biol. Sci., 363, 2625-2628.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ago, H., Adachi, H., Umena, Y., Tashiro, T., Kewakami, K., et al. (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga, J. Biol. Chem., 291, 5676-5687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Antoshvili, M., Caspy, I., Hippler, M., and Nelson, N. (2019) Structure and function of photosystem I in Cyanidioschyzon merolae, Photosynth. Res., 139, 499-508.

    Article  CAS  PubMed  Google Scholar 

  83. Vanselow, C., and Weber, A. P. M., Krause, K., and Fromme, P. (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria, Biochim. Biophys. Acta, 1787, 46-59.

    Article  CAS  PubMed  Google Scholar 

  84. Marquardt, J. (1998) Effects of carotenoid-depletion on the photosynthetic apparatus of a Galdieria sulphuraria (Rhodophyta) strain that retains its photosynthetic apparatus in the dark, J. Plant Physiol., 152, 372-380.

    Article  CAS  Google Scholar 

  85. Bolychevtseva, Yu. V., Tropin, I. V., and Stadnichuk, I. N. (2021) States 1 and 2 in the photosynthetic apparatus of red microalgae and cyanobacteria, Biochemistry (Moscow), 86, 1181-1191.

    Article  CAS  Google Scholar 

  86. Stadnichuk, I. N., Bulychev, A. A., Lukashev, E. P., Sinetova, M. P., Khristin, M. S., et al. (2011) Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population, Biochim. Biophys. Acta, 1807, 227-235.

    Article  CAS  PubMed  Google Scholar 

  87. Salbitani, G., Bottone, C., and Carfagna, C. (2017) Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea, Bioprotocol, 7, e2372, https://doi.org/10.21769/BioProtoc.2372.

    Article  Google Scholar 

  88. Stadnichuk, I. N., Rakhimberdieva, M. G., Bolychevtseva, Yu. V., Yurina, N. P., Karapetyan, N. V., et al. (1998) Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation, Plant Sci., 136, 11-23.

    Article  CAS  Google Scholar 

  89. Voitsekhovskaya, O. V. (2019) Phytochromes and other (photo)information receptors in plants, Rus. J. Plant Physiol., 66, 351-364.

    Article  Google Scholar 

  90. Asimgil, H., and Kavakli, I. (2012) Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae, Plant Sci., 185-186, 190-198, https://doi.org/10.1016/j.plantsci.2011.10.005.

    Article  CAS  PubMed  Google Scholar 

  91. Tardu, M., Dikbas, U. M., Baris, I., and Kavakli, I. H. (2016) RNA-seq analysis of the transcriptional response to blue and red light in the extremophilic red alga, Cyanidioschyzon merolae, Funct. Integr. Genomics, 16, 657-669.

    Article  CAS  PubMed  Google Scholar 

  92. Mishra, S., and Khurana, J. P. (2017) Emerging roles and new paradigms in signaling mechanisms of plant cryptochromes, Crit. Rev. Plant Sci., 36, 1-27.

    Article  Google Scholar 

  93. Nishida, K., Yagisawa, F., Kuroiwa, H., Nagata, T., and Kuroiwa, T. (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae, Mol. Biol. Cell, 16, 2493-2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Doroshenko, A. S., Danilova, M. N., Medvedeva, A. S., and Kuznetsov, V. V. (2019) Participation of blue light signaling components in the regulation of cytokinin-dependent greening of Arabidopsis thaliana seedlings, Rus. J. Plant. Physiol., 66, 403-411.

    Article  Google Scholar 

  95. Kobayashi, Y., Ando, H., Hanaoka, M., and Tanaka, K. (2016) Abscisic acid participates in the control of cell cycle initiation through heme homeostasis in the unicellular red alga Cyanidioschyzon merolae, Plant Cell Physiol., 57, 953-960.

    Article  CAS  PubMed  Google Scholar 

  96. Stadnichuk, I. N., and Tropin, I. V. (2017) Phycobiliproteins: Structure, functions and biotechnological applications, Appl. Biochem. Microbiol., 53, 1-10.

    Article  CAS  Google Scholar 

  97. Sørensen, L., Hantke, A., and Eriksen, N. T. (2013) Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria, J. Sci. Food Agric., 93, 2933-2938.

    Article  PubMed  CAS  Google Scholar 

  98. Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., and Romanowska, E. (2017) Transformation of the Cyanidioschyzon merolae chloroplast genome: Prospects for understanding chloroplast function in extreme environments, Plant Mol. Biol., 93, 171-183.

    Article  CAS  PubMed  Google Scholar 

  99. Lang, I., Bashir, S., Lorenz, M., Rader, S., and Weber, G. (2020) Exploiting the potential of Cyanidiales as a valuable resource for biotechnological applications, Appl. Phycol., https://doi.org/10.1080/26388081.2020.1765702.

    Article  Google Scholar 

  100. Fukuda, S., Hirasawa, E., Takemura, T., Takahashi, S., Chokshi, K., et al. (2018) Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae, Sci. Rep., 8, 12410, https://doi.org/10.1038/s41598-018-30809-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme no. 121040800153-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor N. Stadnichuk.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Dedicated to the memory of O. Yu. Sentsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichuk, I.N., Tropin, I.V. Cyanidiales as Polyextreme Eukaryotes. Biochemistry Moscow 87, 472–487 (2022). https://doi.org/10.1134/S000629792205008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792205008X

Keywords

Navigation