Skip to main content
Log in

Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP’s family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom’s Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5′-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<<PARP2<PARP1; whereas the affinity of each protein for the certain damage type increased in the row: Native = AP site < Gap for PARP1 and PARP2, Gap<<<Native = AP site for PARP3. The interaction regions of each PARP protein with nucleosome were also determined by sodium borohydride cross-linking and footprinting assay. Based on the obtained and published data, the involvement pattern of the PARP1, PARP2, and PARP3 into the interaction with nucleosome particles containing DNA intermediates of the BER process was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AP site:

apurine/apyrimidine site

AP cluster:

cluster of AP sites

APE1:

apurinic/apyrimidinic endonuclease 1

BER:

base excision repair

DNase I:

deoxyribonuclease I

Gap:

DNA duplex containing 5′-dRp-fragment

NCP:

nucleosome or nucleosome core particle

PARP:

poly(ADP-ribose)polymerase

PARylation:

poly(ADP-ribosyl)ation

UDG:

uracil-DNA glycosylase

References

  1. Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709-715, https://doi.org/10.1038/362709a0.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson, D. M., and Barsky, D. (2001) The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA, Mutat. Res., 485, 283-307, https://doi.org/10.1016/s0921-8777(01)00063-5.

    Article  CAS  PubMed  Google Scholar 

  3. Schärer, O. D. (2003) Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. Engl., 42, 2946-2974, https://doi.org/10.1002/anie.200200523.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y.-J., and Wilson, D. M. (2012) Overview of base excision repair biochemistry, Curr. Mol. Pharmacol., 5, 3-13, https://doi.org/10.2174/1874467211205010003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shall, S. S., and de Murcia, G. (2000) Poly(ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat. Res., 460, 1-15, https://doi.org/10.1016/s0921-8777(00)00016-1.

    Article  CAS  PubMed  Google Scholar 

  6. Khodyreva, S. N., and Lavrik, O. I. (2016) Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair, Mol. Biol. (Mosk), 50, 580-595, https://doi.org/10.7868/S0026898416040030.

    Article  CAS  Google Scholar 

  7. Amé, J. C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., et al. (1999) PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase, J. Biol. Chem., 274, 17860-17868, https://doi.org/10.1074/jbc.274.25.17860.

    Article  PubMed  Google Scholar 

  8. Rouleau, M., McDonald, D., Gagné, P., Ouellet, M. E., Droit, A., et al. (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery, J. Cell. Biochem., 100, 385-401, https://doi.org/10.1002/jcb.21051.

    Article  CAS  PubMed  Google Scholar 

  9. Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V., and Dantzer, F. (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3, Exp. Cell Res., 329, 18-25, https://doi.org/10.1016/j.yexcr.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  10. Isabelle, M., Moreel, X., Gagné, J. P., Rouleau, M., Ethier, C., et al. (2010) Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry, Proteome Sci., 8, 22-32, https://doi.org/10.1186/1477-5956-8-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grundy, G. J., Polo, L. M., Zeng, Z., Rulten, S. L., Hoch, N. C., et al. (2016) PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2), Nat. Commun., 7, 12404-12415, https://doi.org/10.1038/ncomms12404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Beek, L., McClay, E., Patel, S., Schimpl, M., Spagnolo, L., et al. (2021) A PARP power: Structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling, Int. J. Mol. Sci., 22, 5112, https://doi.org/10.3390/ijms22105112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, X., LeDuc, R. D., Fornelli, L., Schunter, A. J., Bennett, R. L., et al. (2019) Defining the NSD2 interactome: PARP1 PARylation reduces NSD2 histone methyltransferase activity and impedes chromatin binding, J. Biol. Chem., 294, 12459-12471, https://doi.org/10.1074/jbc.RA118.006159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boehler, C., Gauthier, L. R., Mortusewicz, O., Biard, D. S., Saliou, J.-M., et al. (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression, Proc. Natl. Acad. Sci. USA, 108, 2783-2788, https://doi.org/10.1073/pnas.1016574108.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cistulli, C., Lavrik, O. I., Prasad, R., Hou, E., and Wilson, S. H. (2004) AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate, DNA Repair (Amst), 3, 581-591, https://doi.org/10.1016/j.dnarep.2003.09.012.

    Article  CAS  Google Scholar 

  16. Khodyreva, S. N., Prasad, R., Ilina, E. S., Sukhanova, M. V., Kutuzov, M. M., et al. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1), Proc. Natl. Acad. Sci. USA, 107, 22090-22095, https://doi.org/10.1073/pnas.1009182107.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sukhanova, M., Khodyreva, S., and Lavrik, O. (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair, Mutat. Res., 685, 80-89, https://doi.org/10.1016/j.mrfmmm.2009.08.009.

    Article  CAS  PubMed  Google Scholar 

  18. Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., et al. (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair, J. Biol. Chem., 276, 25541-25548, https://doi.org/10.1074/jbc.M102125200.

    Article  CAS  PubMed  Google Scholar 

  19. Hanzlikova, H., Kalasova, I., Demin, A. A., Pennicott, L. E., Cihlarova, Z., et al. (2018) The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication, Mol. Cell, 71, 319-331, https://doi.org/10.1016/j.molcel.2018.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hakmé, A., Wong, H. K., Dantzer, F., and Schreiber, V. (2008) The expanding field of poly(ADP-ribosyl)ation reactions. “Protein Modifications: Beyond the Usual Suspects” Review Series, EMBO Rep., 9, 1094-1100, https://doi.org/10.1038/embor.2008.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sukhanova, M. V., Abrakhi, S., Joshi, V., Pastre, D., Kutuzov, M. M., et al. (2016) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging, Nucleic Acids Res., 44, 1-12, https://doi.org/10.1093/nar/gkv1476.

    Article  Google Scholar 

  22. Sukhanova, M. V., Hamon, L., Kutuzov, M. M., Joshi, V., Dobra, I., et al. (2019) A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates, J. Mol. Biol., 431, 2655-2673, https://doi.org/10.1016/j.jmb.2019.05.028.

    Article  CAS  PubMed  Google Scholar 

  23. Kutuzov, M. M., Khodyreva, S. N., Amé, J.-C., Ilina, E. S., Sukhanova, M. V., et al. (2013) Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins, Biochimie, 95, 1208-1215, https://doi.org/10.1016/j.biochi.2013.01.007.

    Article  CAS  PubMed  Google Scholar 

  24. Langelier, M. F., Riccio, A. A., and Pascal, J. M. (2014) PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1, Nucleic Acids Res., 42, 7762-7775, https://doi.org/10.1093/nar/gku474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yélamos, J., Schreiber, V., and Dantzer, F. (2008) Toward specific functions of poly(ADP-ribose)polymerase-2, Trends Mol. Med., 14, 169-178, https://doi.org/10.1016/j.molmed.2008.02.003.

    Article  CAS  PubMed  Google Scholar 

  26. Kutuzov, M. M., Khodyreva, S. N., Schreiber, V., and Lavrik, O. I. (2014) The role of PARP2 in DNA repair, Mol. Biol. (Mosk), 48, 561-572, https://doi.org/10.1134/S0026893314040062.

    Article  CAS  Google Scholar 

  27. Talhaoui, I., Lebedeva, N. A., Zarkovic, G., Saint-Pierre, C., Kutuzov, M. M., et al. (2016) Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro, Nucleic Acids Res., 44, 9279-9295, https://doi.org/10.1093/nar/gkw67523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belousova, E. A., Ishchenko, A. A., and Lavrik, O. I. (2018) DNA is a new target of Parp3, Sci. Rep., 8, 4176-4187, https://doi.org/10.1038/s41598-018-22673-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarkovic, G., Belousova, E. A., Talhaoui, I., Saint-Pierre, C., Kutuzov, M. M., et al. (2018) Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: New insights into DNA ADP-ribosylation, Nucleic Acids Res., 46, 2417-2431, https://doi.org/10.1093/nar/gkx1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGinty, R. K., and Tan, S. (2015) Nucleosome structure and function, Chem. Rev., 115, 2255-2273, https://doi.org/10.1021/cr500373h.

    Article  CAS  PubMed  Google Scholar 

  31. Kutuzov, M. M., Kurgina, T. A., Belousova, E. A., Khodyreva, S. N., and Lavrik, O. I. (2019) Optimization of nucleosome assembly from histones and model DNAs and estimation of the reconstitution efficiency, Biopolym. Cell, 35, 91-98, https://doi.org/10.7124/bc.00099A.

    Article  Google Scholar 

  32. Beard, B. C., Wilson, S. H., and Smerdon, M. J. (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes, Proc. Natl. Acad. Sci. USA, 100, 7465-7470, https://doi.org/10.1073/pnas.1330328100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cole, H. A., Tabor-Godwin, J. M., and Hayes, J. J. (2010) Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets, J. Biol. Chem., 285, 2876-2885, https://doi.org/10.1074/jbc.M109.073544.

    Article  CAS  PubMed  Google Scholar 

  34. Hinz, J. M. (2014) Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity, Mutat. Res., 766, 19-24, https://doi.org/10.1016/j.mrfmmm.2014.05.008.

    Article  CAS  PubMed  Google Scholar 

  35. Clark, N. J., Kramer, M., Muthurajan, U. M., and Luger, K. (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes, J. Biol. Chem., 287, 32430-32439, https://doi.org/10.1074/jbc.M112.397067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochem. J., 342, 249-268.

    Article  Google Scholar 

  37. Messner, S., Altmeyer, M., Zhao, H., Pozivil, A., Roschitzki, B., et al. (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails, Nucleic Acids Res., 38, 6350-6362, https://doi.org/10.1093/nar/gkq463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kutuzov, M. M., Belousova, E. A., Kurgina, T. A., Ukraintsev, A. A., Vasil’eva, I. A., et al. (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context, Sci. Rep., 11, 4849-4865, https://doi.org/10.1038/s41598-021-84351-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amé, J.-C., Kalisch, T., Dantzer, F., and Schreiber, V. (2011) Purification of recombinant poly(ADP-ribose) polymerases, Methods Mol. Biol., 780, 135-152, https://doi.org/10.1007/978-1-61779-270-0_9.

    Article  CAS  PubMed  Google Scholar 

  40. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  41. Dey, B., Thukral, S., Krishnan, S., Chakrobarty, M., Gupta, S., et al. (2012) DNA–protein interactions: Methods for detection and analysis, Mol. Cell. Biochem., 365, 279-299, https://doi.org/10.1007/s11010-012-1269-z.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, C., Sczepanski, J. T., and Greenberg, M. M. (2012) Mechanistic studies on histone catalyzed cleavage of apyrimidinic/apurinic sites in nucleosome core particles, J. Am. Chem. Soc., 134, 16734-16741, https://doi.org/10.1021/ja306858m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sczepanski, J. T., Zhou, C., and Greenberg, M. M. (2013) Nucleosome core particle – catalyzed strand scission at abasic sites, Biochemistry, 52, 2157-2164, https://doi.org/10.1021/bi3010076.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, K., and Greenberg, M. M. (2018) Enhanced cleavage at abasic sites within clustered lesions in nucleosome core particles, Chembiochem, 19, 2061-2065, https://doi.org/10.1002/cbic.201800338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kutuzov, M. M., Khodyreva, S. N., Ilina, E. S., Sukhanova, M. V., Amé, J.-C., et al. (2015) Interaction of PARP-2 with AP site containing DNA, Biochimie, 112, 10-19, https://doi.org/10.1016/j.biochi.2015.02.010.

    Article  CAS  PubMed  Google Scholar 

  46. Wiederhold, L., Leppard, J. B., Kedar, P., Karimi-Busheri, F., Rasouli-Nia, A., et al. (2004) AP endonuclease-independent DNA base excision repair in human cells, Mol. Cell, 15, 209-220, https://doi.org/10.1016/j.molcel.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  47. Khodyreva, S. N., and Lavrik, O. I. (2020) Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites, DNA Repair (Amst), 90, 102847-102861, https://doi.org/10.1016/j.dnarep.2020.102847.

    Article  CAS  Google Scholar 

  48. Fromme, J. C., and Verdine, G. L. (2004) Base excision repair, Adv. Protein Chem., 69, 1-41, https://doi.org/10.1016/S0065-3233(04)69001-2.

    Article  CAS  PubMed  Google Scholar 

  49. Krokeide, S. Z., Bolstad, N., Laerdahl, J. K., Bjørås, M., and Luna, L. (2009) Expression and purification of NEIL3, a human DNA glycosylase homolog, Protein Expr. Purif., 65, 160-164, https://doi.org/10.1016/j.pep.2008.11.014.

    Article  CAS  PubMed  Google Scholar 

  50. Piersen, C. E., McCullough, A. K., and Lloyd, R. S. (2000) AP lyases and dRPases: Commonality of mechanism, Mutat. Res., 459, 43-53, https://doi.org/10.1016/s0921-8777(99)00054-3.

    Article  CAS  PubMed  Google Scholar 

  51. Khodyreva, S. N., and Lavrik, O. I. (2011) Affinity modification in a proteomic study of DNA repair ensembles, Bioorg. Khim., 37, 91-107, https://doi.org/10.1134/s1068162011010109.

    Article  CAS  PubMed  Google Scholar 

  52. Galas, D. J., and Schmitz, A. (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity, Nucleic Acids Res., 5, 3157-3170, https://doi.org/10.1093/nar/5.9.3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maluchenko, N. V., Nilov, D. K., Pushkarev, S. V., Kotova, E. Y., Gerasimova, N. S., et al. (2021) Mechanisms of nucleosome reorganization by PARP1, Int. J. Mol. Sci., 22, 12127, https://doi.org/10.3390/ijms222212127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaullier, G., Roberts, G., Muthurajan, U. M., Bowerman, S., Rudolph, J., et al. (2020) Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1, PLoS One, 15, e0240932, https://doi.org/10.1371/journal.pone.0240932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant no. 20-04-00674) and Russian Government funded budget project of ICBFM SB RAS no. 121031300041-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Lavrik.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukraintsev, A.A., Belousova, E.A., Kutuzov, M.M. et al. Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process. Biochemistry Moscow 87, 331–345 (2022). https://doi.org/10.1134/S0006297922040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922040034

Keywords

Navigation