Skip to main content
Log in

Mechanism of Energy Storage and Transformation in the Mitochondria at the Water–Membrane Interface

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review, we discuss the mechanisms of generation of membrane-bound protons using different energy sources in model and natural systems. Analysis of these mechanisms revealed that all three types of reactions include the same principal stage, which is dissociation of electrically neutral Brønsted acids at the interface during transition from the hydrophobic phase to water with a low dielectric constant. Special attention is paid to the fact that in one of the analyzed model systems, membrane-bound protons provide energy for the reaction of ATP synthesis. Similar mechanism for the generation of membrane-bound protons has been found in natural membranes involved in oxidative phosphorylation, in particular, on the membranes of mitoplasts and mitochondria. The energy of oxidative reactions required for ATP synthesis, is stored at the intermediate stage not only in the form of transmembrane electrochemical potential of protons, but also and perhaps mostly, as protons attached to the inner mitochondrial membrane. The process of energy storage in mitochondria is linked to the transfer of protons that simultaneously perform two functions. Protons on the membrane surface carry free energy and, at the same time, act as substrates facilitating the movement of F1F0-ATP-synthase biological machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

BLM:

bilayer lipid membrane

OXPHOS:

oxidative phosphorylation

References

  1. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144-148.

    Article  CAS  Google Scholar 

  2. Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Proton conductors in the respirator chain and artificial membranes, Nature, 216, 718-719, https://doi.org/10.1038/216718a0.

    Article  CAS  PubMed  Google Scholar 

  3. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.

    Article  CAS  PubMed  Google Scholar 

  4. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., et al. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  5. Williams, R. J. P. (1961) Possible functions of chains of catalysts, J. Theor. Biol., 1, 1-17, https://doi.org/10.1016/0022-5193(61)90023-6.

    Article  CAS  PubMed  Google Scholar 

  6. Kell, D. B. (1979) On the functional proton current pathway of electron transport phosphorylation: An electrodic view, Biochim. Biophys. Acta, 9, 55-99, https://doi.org/10.1016/0304-4173(79)90018-1.

    Article  Google Scholar 

  7. Mitchell, P. (1991) Foundations of vectorial metabolism and osmochemistry, Biosci. Rep., 11, 297-346, https://doi.org/10.1007/BF01130212.

    Article  CAS  PubMed  Google Scholar 

  8. Junge, W., and Ausländer, W. (1974) The electric generator in photosynthesis of green plants. I. Vectorial and protolytic properties of the electron transport chain, Biochim. Biophys. Acta Bioenerg., 333, 59-70, https://doi.org/10.1016/0005-2728(74)90163-7.

    Article  CAS  Google Scholar 

  9. Drachev, L. A., Kaulen, A. D., and Skulachev, V. P. (1984) Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin, FEBS Lett., 178, 331-335, https://doi.org/10.1016/0014-5793(84)80628-6.

    Article  CAS  Google Scholar 

  10. Yaguzhinsky, L. S., Boguslavsky, L. I., Volkov, A. G., and Rakhmaninova, A. B. (1976) Synthesis of ATP coupled with action of membrane protonic pumps at the octane–water interface, Nature, 259, 494-496, https://doi.org/10.1038/259494a0.

    Article  CAS  PubMed  Google Scholar 

  11. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D., and Dencher, N. A. (1994) Proton migration along the membrane surface and retarded surface to bulk transfer, Nature, 370, 379-382, https://doi.org/10.1038/370379a0.

    Article  CAS  PubMed  Google Scholar 

  12. Alexiev, U., Mollaaghababa, R., Scherrer, P., Khorana, H. G., and Heyn, M. P. (1995) Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk, Proc. Natl. Acad. Sci. USA, 92, 372-376.

    Article  CAS  Google Scholar 

  13. Gopta, O. A., Cherepanov, D. A., Junge, W., and Mulkidjanian, A. Y. (1999) Proton transfer from the bulk to the bound ubiquinone QB of the reaction center in chromatophores of Rhodobacter sphaeroides: Retarded conveyance by neutral water, Proc. Natl. Acad. Sci. USA, 96, 13159-13164, https://doi.org/10.1073/pnas.96.23.13159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cherepanov, D. A., Junge, W., and Mulkidjanian, A. Y. (2004) Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier, Biophys. J., 86, 665-680, https://doi.org/10.1016/S0006-3495(04)74146-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medvedev, E., and Stuchebrukhov, A. (2012) Mechanism of long-range proton translocation along biological membranes, FEBS Lett., 587, 345-349, https://doi.org/10.1016/j.febslet.2012.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weichselbaum, E., Österbauer, M., Knyazev, D. G., Batishchev, O. V., Akimov, S. A., et al. (2017) Origin of proton affinity to membrane/water interfaces, Sci. Rep., 7, 4553, https://doi.org/10.1038/s41598-017-04675-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toth, A., Meyrat, A., Stoldt, S., Santiago, R., Wenzel, D., et al. (2020) Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes, Proc. Natl. Acad. Sci. USA, 117, 2412-2421, https://doi.org/10.1073/pnas.1917968117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sjöholm, J., Bergstrand, J., Nilsson, T., Šachl, R., Ballmoos, C., et al. (2017) The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate, Sci. Rep., 7, 1-12, https://doi.org/10.1038/s41598-017-02836-4.

    Article  CAS  Google Scholar 

  19. Nesterov, S., Chesnokov, Y., Kamyshinsky, R., Panteleeva, A., Lyamzaev, K., et al. (2021) Ordered clusters of the complete oxidative phosphorylation system in cardiac mitochondria, Int. J. Mol. Sci., 22, 1462, https://doi.org/10.3390/ijms22031462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morelli, A. M., Ravera, S., Calzia, D., and Panfoli, I. (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane, Open Biol., 9, https://doi.org/10.1098/rsob.180221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, J. W. (2021) Mitochondrial energetics with transmembrane electrostatically localized protons: do we have a thermotrophic feature? Sci. Rep., 11, 14575, https://doi.org/10.1038/s41598-021-93853-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teschke, O., Ceotto, G., and de Souza, E. F. (2001) Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy, Phys. Rev. E, 64, 011605, https://doi.org/10.1103/PhysRevE.64.011605.

    Article  CAS  Google Scholar 

  23. Tashkin, V. Yu., Vishnyakova, V. E., Shcherbakov, A. A., Finogenova, O. A., Ermakov, Yu. A., et al. (2019) Changes in the capacitance and boundary potential of a bilayer lipid membrane associated with a fast release of protons on its surface, Biochemistry (Moscow) Suppl. A Membr. Cell Biol., 13, 101-108, https://doi.org/10.1134/S1990747819020077.

    Article  Google Scholar 

  24. Moiseeva, V. S., Motovilov, K. A., Lobysheva, N. V., Orlov, V. N., and Yaguzhinsky, L. S. (2011) The formation of metastable bond between protons and mitoplast surface, Dokl. Biochem. Biophys., 438, 127-130.

    Article  CAS  Google Scholar 

  25. Eroshenko, L. V., Marakhovskaya, A. S., Vangeli, I. M., Semenyuk, P. I., Orlov, V. N., et al. (2012) Bronsted acids bounded to the mitochondrial membranes as a substrate for ATP synthase, Dokl. Biochem. Biophys., 444, 158-161.

    Article  CAS  Google Scholar 

  26. Ermakov, Y. A., and Nesterenko, A. M. (2017) Boundary potential of lipid bilayers: Methods and interpretations, J. Phys. Conf. Ser., 780, 012002, https://doi.org/10.1088/1742-6596/780/1/012002.

    Article  CAS  Google Scholar 

  27. Antonenko, Y. N., Kovbasnjuk, O. N., and Yaguzhinsky, L. S. (1993) Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phospholipid membrane to bulk water, Biochim. Biophys. Acta, 1150, 45-50, https://doi.org/10.1016/0005-2736(93)90119-K.

    Article  CAS  PubMed  Google Scholar 

  28. Gonella, G., Backus, E. H. G., Nagata, Y., Bonthuis, D. J., Loche, P., et al. (2021) Water at charged interfaces, Nat. Rev. Chem., 5, 466-485, https://doi.org/10.1038/s41570-021-00293-2.

    Article  CAS  Google Scholar 

  29. Antonenko, Yu. N., and Yaguzhinsky, L. S. (1982) Generation of potential in lipid bilayer membranes as a result of proton-transfer reactions in the unstirred layers, J. Bioenerg. Biomembr., 14, 457-465, https://doi.org/10.1007/BF00743071.

    Article  CAS  PubMed  Google Scholar 

  30. Antonenko, Y. N., and Yaguzhinsky, L. S. (1990) Effect of changes in cation concentration near bilayer lipid membrane on the rate of carrier-mediated cation fluxes and on the carrier apparent selectivity, Biochim. Biophys. Acta, 1026, 236-240, https://doi.org/10.1016/0005-2736(90)90069-Z.

    Article  CAS  PubMed  Google Scholar 

  31. Eremeev, S. A. and Yaguzhinsky, L. S. (2015) On local coupling of electron transport and ATP-synthesis system in mitochondria. Theory and experiment, Biochemistry (Moscow), 80, 576-581, https://doi.org/10.1134/S0006297915050089.

    Article  CAS  Google Scholar 

  32. Kovbasnjuk, O. N., Antonenko, Y. N., and Yaguzhinsky, L. S. (1991) Proton dissociation from nigericin at the membrane–water interface, the rate-limiting step of K+/H+ exchange on the bilayer lipid membrane, FEBS Lett., 289, 176-178, https://doi.org/10.1016/0014-5793(91)81063-E.

    Article  CAS  PubMed  Google Scholar 

  33. Evtodienko, V. Y., Antonenko, Y. N., and Yaguzhinsky, L. S. (1998) Increase of local hydrogen ion gradient near bilayer lipid membrane under the conditions of catalysis of proton transfer across the interface, FEBS Lett., 425, 222-224, https://doi.org/10.1016/s0014-5793(98)00233-6.

    Article  CAS  PubMed  Google Scholar 

  34. Dragunova, S. F., Krasinskaya, I. P., and Yaguzhinsky, L. S. (1981) Regulation of proton transfer across the electrical double layer on the mitochondrial membrane, Biokhimiya, 46, 1087-1095.

    CAS  Google Scholar 

  35. Geißler, D., Antonenko, Y. N., Schmidt, R., Keller, S., Krylova, O. O., et al. (2005) (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces, Angew. Chem. Int. Ed., 44, 1195-1198, https://doi.org/10.1002/anie.200461567.

    Article  CAS  Google Scholar 

  36. Serowy, S., Saparov, S. M., Antonenko, Y. N., Kozlovsky, W., Hagen, V., et al. (2003) Structural proton diffusion along lipid bilayers, Biophys. J., 84, 1031-1037.

    Article  CAS  Google Scholar 

  37. Springer, A., Hagen, V., Cherepanov, D. A., Antonenko, Y. N., and Pohl, P. (2011) Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface, Proc. Natl. Acad. Sci. USA, 108, 14461-14466, https://doi.org/10.1073/pnas.1107476108.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaslavsky, D., Sadoski, R. C., Rajagukguk, S., Geren, L., Millett, F., et al. (2004) Direct measurement of proton release by cytochrome c oxidase in solution during the F→O transition, Proc. Natl. Acad. Sci. USA, 101, 10544-10547, https://doi.org/10.1073/pnas.0401521101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Le Coutre, J., and Gerwert, K. (1996) Kinetic isotope effects reveal an ice-like and a liquid-phase-type intramolecular proton transfer in bacteriorhodopsin, FEBS Lett., 398, 333-336, https://doi.org/10.1016/S0014-5793(96)01254-9.

    Article  CAS  PubMed  Google Scholar 

  40. Salomonsson, L., Brändén, G., and Brzezinski, P. (2008) Deuterium isotope effect of proton pumping in cytochrome c oxidase, Biochim. Biophys. Acta, 1777, 343-350, https://doi.org/10.1016/j.bbabio.2007.09.009.

    Article  CAS  PubMed  Google Scholar 

  41. Salomonsson, L., Faxén, K., Adelroth, P., and Brzezinski, P. (2005) The timing of proton migration in membrane-reconstituted cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 102, 17624-17629, https://doi.org/10.1073/pnas.0505431102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, C., Knyazev, D. G., Vereshaga, Y. A., Ippoliti, E., Nguyen, T. H., et al. (2012) Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion, Proc. Natl. Acad. Sci. USA, 109, 9744-9749, https://doi.org/10.1073/pnas.1121227109.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yurkov, V. I., Fadeeva, M. S., and Yaguzhinsky, L. S. (2005) Proton transfer through the membrane-water interfaces in uncoupled mitochondria, Biochemistry (Moscow), 70, 195-199, https://doi.org/10.1007/s10541-005-0101-8.

    Article  CAS  Google Scholar 

  44. Solodovnikova, I. M., Yurkov, V. I., Tonshin, A. A., and Yaguzhinsky, L. S. (2004) Local coupling between respiration and phosphorylation in rat liver mitochondria, Biophysics, 49, 42-51.

    Google Scholar 

  45. Conway, B. E. (1999) Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, New York.

  46. Deplazes, E., White, J., Murphy, C., Cranfield, C. G., and Garcia, A. (2019) Competing for the same space: Protons and alkali ions at the interface of phospholipid bilayers, Biophys. Rev., 11, 483-490, https://doi.org/10.1007/s12551-019-00541-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-04-00835) and Kurchatov Institute National Research Center (research task “Investigation of generation, transfer, and distribution of energy in live organisms”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev S. Yaguzhinsky.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, S.V., Smirnova, E.G. & Yaguzhinsky, L.S. Mechanism of Energy Storage and Transformation in the Mitochondria at the Water–Membrane Interface. Biochemistry Moscow 87, 179–190 (2022). https://doi.org/10.1134/S0006297922020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020092

Keywords

Navigation