Skip to main content
Log in

Foundations of vectorial metabolism and osmochemistry

  • Symposium Papers
  • Published:
Bioscience Reports

Abstract

Chemical transformations, like osmotic translocations, are transport processes when looked at in detail. In chemiosmotic systems, the pathways of specific ligand conduction are spatially orientated through osmoenzymes and porters in which the actions of chemical group, electron and solute transfer occur as vectorial (or higher tensorial order) diffusion processes down gradients of total potential energy that represent real spatially-directed fields of force. Thus, it has been possible to describe classical bag-of-enzymes biochemistry as well as membrane biochemistry in terms of transport. But it would not have been possible to explain biological transport in terms of classical transformational biochemistry or chemistry. The recognition of this conceptual asymmetry in favour of transport has seemed to be upsetting to some biochemists and chemists; and they have resisted the shift towards thinking primarily in terms of the vectorial forces and co-linear displacements of ligands in place of their much less informative scalar products that correspond to the conventional scalar energies. Nevertheless, considerable progress has been made in establishing vectorial metabolism and osmochemistry as acceptable biochemical disciplines embracing transport and metabolism, and bioenergetics has been fundamentally transformed as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, N. K. (1941)The Physics and Chemistry of Surfaces, 3rd ed. University Press, Oxford.

    Google Scholar 

  • Allred, D. R. and Staehelin, L. A. (1986) Implications of cytochrome b6/f location for thylakoid electron transport.J. Bioenerg. Biomembr. 18:419–436.

    Google Scholar 

  • Arrhenius, S. A. (1989) Electrolytic dissociationversus hydration.Phil. Mag. 28:30–38.

    Google Scholar 

  • Arrhenius, S. A. (1912) Electrolytic dissociation.J. Am. Chem. Soc. 34:353–364.

    Google Scholar 

  • Bangham, A. D., Standish, M. M. and Watkins, J. C. (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238–252.

    Google Scholar 

  • Bangham, A. D. (1983) Introduction. Liposomes: An historical perspective. In:Liposomes (Ostro, M. J., Ed.). Marcel Dekker, New York, pp. 1–13.

    Google Scholar 

  • Bell, R. P. (1959)The Proton in Chemistry. Methuen, London.

    Google Scholar 

  • Blodgett, K. B. (1934) Monomolecular films of fatty acids on glass.J. Am. Chem. Soc. 56:495.

    Google Scholar 

  • Blodgett, K. B. (1935). Films built by depositing successive monomolecular layers on a solid surface.J. Am. Chem. Soc. 57:1007–1022.

    Google Scholar 

  • Boyer, P. D. (1974) Conformational coupling in biological energy transductions.BBA Library 13:289–301.

    Google Scholar 

  • Boyer, P. D. (1983). How cells make ATP. In:Biochemistry of Metabolic Processes (Lennon, D. L. et al., Eds.). Elsevier, New York, pp. 465–477.

    Google Scholar 

  • Boyer, P. D. (1989) A perspective of the binding change mechanism for ATP synthesis.FASEB J 3:2164–2178.

    Google Scholar 

  • Conway, E. J. (1951). The biological performance of osmotic work. A redox pump.Science 113:270–273.

    Google Scholar 

  • Crane, F. L., Glenn, J. L. and Green, D. E. (1956). Electron-transfer system IV. Electron-transfer particle.Biochim. Biophys. Acta 22:475–487.

    Google Scholar 

  • Curie, M. P. (1894). Sur la symétrie dans les phénomenes physiques, symétrie d'un champ électrique et d'un champ magnétique. {jtJ. Phys. 3eme Ser.} 393–415.

  • Danielli, J. F. (1954) Morphological and molecular aspects of active transport.Symp. Soc. Exp. Biol. 8:502–516.

    Google Scholar 

  • Davies, R. E. and Ogston, A. G. (1950) On the mechanism of secretion of ions by gastric mucosae and by other tissues.Biochem. J. 46:324–333.

    Google Scholar 

  • Davies, R. E. and Krebs, H. A. (1952). Biochemical aspects of the transport of ions by nervous tissue.Biochem. Soc. Symp. 8:77–92.

    Google Scholar 

  • Davson, H. and Danielli, J. F. (1943).The Permeability of Natural Membranes. University Press, Cambridge.

    Google Scholar 

  • Davy, H. (1808). The Bakerian lecture on some new phenomena of chemical changes produced by Electricity, particularly the decomposition of fixed Alkalies, and the exhibition of the new substances which constitute their basis; and on the general nature of Alkaline bodies.Phil. Trans. 1–44

  • Debye, P. and Huckel, E. (1923) Zur Theorie der Electrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen.Physik. Z. 24:185–206.

    Google Scholar 

  • De Vries, H. (1888) Versuche m. lebende MembranenZ. physikal. Chem. 2:415–432.

    Google Scholar 

  • Donnan, F. G. (1925) Theory of membrane equilibria.Chem. Rev. 1:73–90.

    Google Scholar 

  • Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben, K. F., Leja, C. A. and Roy, M. (1990) The tryptophan synthase bienzyme complex transfers indole between the α- and β-sites via a 25–30 Å long tunnel.Biochemistry 29:8598–8607.

    Google Scholar 

  • Einstein, A. (1905) Die von der molecularkinetischen Theorie der Warme.Ann. Physik 17:549–560.

    Google Scholar 

  • Einstein, A. (1908) Elementare Theorie d. Brownschen Bewegg.Z. Electrochem. 14:235–239.

    Google Scholar 

  • Evans, M. G. and Polanyi, M. (1935) Some applications of the transition state method to the calculation of reaction velocities.Trans. Farad. Soc. 31:875–894.

    Google Scholar 

  • Eyring, H. (1935) The activated complex in chemical reactions.J. Chem. Phys. 3:107–115.

    Google Scholar 

  • Faraday, M. (1834) Experimental researches in Electricity.Seventh series. 11. On electro-chemical decomposition (continued). 13. On the absolute quantity of electricity associated with the particles or atoms of matter.Phil. Trans. 77–122.

  • Fick, A. (1855) On liquid diffusion.Phil. Mag. [4]10:30–39.

    Google Scholar 

  • Futai, M., Hanada, H., moriyama, Y. and Maeda, M. (1991) Proton translocating ATP synthase (F0F1): Understanding its molecular structure and function. In:New Era of Bioenergetics (Mukohata, Y., Ed.). Academic Press, Tokyo, pp. 73–108.

    Google Scholar 

  • Garland, P. B. (1991) Chemiosmotic systems in medicine.Biosci. Rep. 11 (this issue).

  • Glasstone, S., Laidler, K. J. and Eyring, H. (1941).The Theory of Rate Processes. McGraw-Hill, New York.

    Google Scholar 

  • Glynn, I. M. and Karlish, S. J. D. (1990) Occluded cations in active transport.Annu. Rev. Biochem. 59:171–205.

    Google Scholar 

  • Gorter, E. and Grendel, F. (1925) On bimolecular layer of lipoids on the chromocytes of the blood.J. Exp. Med. 41:439–443.

    Google Scholar 

  • Gorter, E. and Grendel, F. (1926) Spreading of proteins.Proc. Kon. Acad. Wetensch. Amsterdam 29:314.

    Google Scholar 

  • Green, D. E., Stickland, I. H. and Tarr, H. L. A. (1934) Studies on reversible dehydrogenase systems III. Carrier-linked reactions between isolated dehydrogenases.Biochem. J. 28:1812–1824.

    Google Scholar 

  • Grijns, G. (1896) Ueber den einfluss gelöster Stoffe auf die rothen Blutzelle, in Verbindung mit den Erscheinungen der Osmose und Diffusion.Pfluger's Arch. ges. Physiol. 63:86–119.

    Google Scholar 

  • Grove, W. R. (1839) On voltaic, series and the combination of gases by platinum.Phil. Mag. Ser. 3 14:127–130.

    Google Scholar 

  • Guggenheim, E. A. (1933)Modern Thermodynamics by the Methods of Willard Gibbs. Methuen, London.

    Google Scholar 

  • Hammes, G. G. (1964) Mechanism of enzyme catalysis.Nature.204:342–343.

    Google Scholar 

  • Harold, F. M. (1991) Biochemical topology: From vectorial metabolism to morphogenesis.Biosci. Rep. 11 (this issue).

  • Hedin, S. (1897) Über die Permeabilität der Blutkörperchen.Pfluger's Arch. ges. Physiol. 68:229–338.

    Google Scholar 

  • Hedin, S. (1898) Versuche über das Vermögen der Salze einiger Stickstoffbasen in die Blutkörperchen einzudringen.Pfluger's Arch. ges. Physiol. 70:525–543.

    Google Scholar 

  • Henderson, P. J. F. (1991) Studies of translocation catalysis.Biosci. Rep. 11 (this issue).

  • Hilpert, W., Schink, B. and Dimroth, P. (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion.EMBO J. 3:1665–1680.

    Google Scholar 

  • Hober, R. (1945)Physical Chemistry of Cells and Tissues. J. and A. Churchill Ltd., London.

    Google Scholar 

  • Holton, G. (1973)Thematic origins of scientific thought: Kepler to Einstein. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Hyde, C. H., Ahmed, S. A., Padlan, E. A., Miles, E. W. and Davies, D. R. (1988) Three-dimensional structure of the tryptophan synthaseα 2 β 2 multienzyme complex fromSalmonella typhimurium.J. Biol. Chem. 263:17857–17871.

    Google Scholar 

  • Kagawa, Y., Shigeo, O., Hamomoto, T., Harada, M., Ito, Y. and Sato, M. (1991) Theα 1 β 1 heterodimer and molecular assembly of ATP synthase. 109–132.

  • Keilin, D. and King, T. E. (1958) Reconstitution of the succinic oxidase system from soluble succinic dehydrogenase and a particulate cytochrome system preparation.Nature, Lond. 181:1520–1522.

    Google Scholar 

  • Keilin, D. and Slater, E. C. (1953) Cytochrome.Brit. Med. Bull. 9:89–97.

    Google Scholar 

  • Kelly, D. P. (1990) Energetics of chemolithotrophs. In:The Bacteria, Vol. 12 (Krulwich, T. A. Ed.). Academic Press, San Diego, pp. 479–503.

    Google Scholar 

  • Kendrew, J. (1961) The structure of globular proteins. (See also discussion comments.) In:Biological Structure and Function, Vol. 1 (Goodwin, T. W. and Lindberg, O., Eds.). Academic Press, London, pp. 5–11.

    Google Scholar 

  • Koshland, D. E. (1960) The active site and enzyme action.Adv. Enzymol. 22:45–97.

    Google Scholar 

  • Koshland, D. E. (1976) The role of flexibility in the specificity, control and evolution of enzymes.FEBS Lett. 62:Supplement E47-E52.

    Google Scholar 

  • Koshland, D. E. and Neet, K. E. (1968) The catalytic and regulatory properties of enzymes.Annu. Rev. Biochem. 37:359–410.

    Google Scholar 

  • Krab, K. and Wikström, M. (1987) Principles of coupling between electron transfer and proton translocation with special reference to proton-translocation mechanisms in cytochrome oxidase.Biochim. Biophys. Acta 895:25–39.

    Google Scholar 

  • Kramers, H. A. (1940) Brownian motion in a field of force and the diffusion model of chemical reactions.Physica 7:2284–304.

    Google Scholar 

  • Langmuir, I. (1916) Constitution and fundamental properties of solids and liquids.J. Am. Chem. Soc. 38: 2221–2295.

    Google Scholar 

  • Langmuir, I. (1917) Constitution and fundamental properties of solids and liquids.J. Am. Chem. Soc. 39: 1848–1906.

    Google Scholar 

  • Langmuir, I. (1920) The mechanism of the surface phenomena of flotation.Trans. Farad. Soc. 15: 62–68.

    Google Scholar 

  • Langmuir, I. (1938) Overturning and anchoring of monolayers.Science 87: 493–500.

    Google Scholar 

  • Langmuir, I. (1939) Molecular layers.Proc. Roy. Soc. A 170: 1–39.

    Google Scholar 

  • Lipmann, F. (1941) Metabolic generation and utilisation of phosphate bond energy.Adv. Enzymol. 1: 99–162.

    Google Scholar 

  • Lipmann, F. (1946) Metabolic process patterns. In:Currents in Biochemical Research (Green, D. E., Ed.), Interscience, New York, pp. 137–148.

    Google Scholar 

  • Lipmann, F. (1960) Attempts towards a formulation of biological use of energy in terms of chemical potentials. In:Molecular Biology (Nachmansohn, D., Ed.), Academic Press, New York, pp. 37–47.

    Google Scholar 

  • Lundegardh, H. (1945) Absorption, transport and exudation of inorganic ions by the roots.Archiv. Bot. 32A,12: 1–139.

    Google Scholar 

  • MacInnes, D. A. (1939)The Principles of Electrochemistry. Reinhold, New York.

    Google Scholar 

  • Malmström, B. G. (1988) Redox loops and proton pumps.FEBS Lett. 231: 268–269.

    Google Scholar 

  • Margerum, D. W. (1982) Chemistry of copper(III)-peptide complexes. In:Oxidases and Related Redox Systems, Vol. 3 (King, T. E. et al., Eds.), Pergamon, Oxford, pp. 193–206.

    Google Scholar 

  • Miki, T. and Orii, (1986) Cytochromec peroxidase activity in bovine heart cytochrome oxidase incorporated in liposomes and generation of membrane potential.J. Biochem. 100: 735–745.

    Google Scholar 

  • Mitchell, P. (1949) The osmotic barrier in bacteria. In:The Nature of the Bacterial Surface (Miles, A. A. and Pirie, N. W., Eds.), Blackwell, Oxford, pp. 55–75.

    Google Scholar 

  • Mitchell, P. (1954) Transport of phosphate through an osmotic barrier.Symp. Soc. Exp. Biol. 8: 254–261.

    Google Scholar 

  • Mitchell, P. (1956) Discussion contribution.Faraday Soc. Discuss. 21: 278–279.

    Google Scholar 

  • Mitchell, P. (1957a) A general theory of membrane transport from studies of bacteria.Nature 180: 134–136.

    Google Scholar 

  • Mitchell, P. (1957b) The origin of life and the formation and organising functions of natural membranes. In:The Origin of Life on the Earth (Oparin et al. Eds.), Publ. Ho. Acad. Sci. USSR, Moscow, pp. 229–234.

    Google Scholar 

  • Mitchell, P. (1959) Structure and function in microorganisms.Biochem. Soc. Symp. 16: 73–93.

    Google Scholar 

  • Mitchell, P. (1961a) Biological transport phenomena and the spatially anisotropic characteristics of enzyme systems causing a vector component of metabolism. In:Membrane Transport and Metabolism (Kleinzeller, A. and Kotyk, A., Eds.), Academic Press, New York, pp. 22–34.

    Google Scholar 

  • Mitchell, P. (1961b) Discussion contributions. In:Membrane Transport and Metabolism (Kleinzeller, A. and Kotyk, A., Eds.), Academic Press, New York, p. 100–102.

    Google Scholar 

  • Mitchell, P. (1961c) Discussion contribution. In:Membrane Transport and Metabolism (Kleinzeller, A. and Kotyk, A., Eds.), Academic Press, New York, p. 456.

    Google Scholar 

  • Mitchell, P. (1961d) Approaches to the analysis of specific membrane transport. In:Biological Structure and Function (Goodwin, T. W. and Lindberg, O., Eds.), Academic Press, New York, pp. 581–599.

    Google Scholar 

  • Mitchell, P. (1961e) Coupling of phosphorylation to electron hydrogen transfer by a chemiosmotic type of mechanism.Nature,191: 144–148.

    Google Scholar 

  • Mitchell, P. (1962) Metabolism, transport and morphogenesis: which drives which?J. Gen. Microbiol. 29: 25–37.

    Google Scholar 

  • Mitchell, P. (1963) Molecule, group and electron translocation through natural membranes.Biochem. Soc. Symp. 22: 141–168.

    Google Scholar 

  • Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41: 445–502.

    Google Scholar 

  • Mitchell, P. (1967a) Translocations through natural membranes.Adv. Enzymol. 29: 33–87.

    Google Scholar 

  • Mitchell, P. (1967b) Active transport and ion accumulation.Compr. Biochem. 22: 167–197.

    Google Scholar 

  • Mitchell, P. (1967c) Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells.Federation Proc. 26: 1370–1379.

    Google Scholar 

  • Mitchell, P. (1969) Chemiosmotic coupling and energy transduction.Theor. Exp. Biophys. 2: 159–216.

    Google Scholar 

  • Mitchell, P. (1970a) Reversible coupling between transport and chemical reactions. In:Membranes and Ion Transport, Vol. 1 (Bittar, E. E., Ed.), John Wiley & Son, London, pp. 192–256.

    Google Scholar 

  • Mitchell, P. (1970a) Membranes of cells and organelles: morphology, transport and metabolism.Symp. Soc. Gen. Microbiol. 20: 121–166.

    Google Scholar 

  • Mitchell, P. (1972) Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge.Bioenerg. 3: 5–24.

    Google Scholar 

  • Mitchell, P. (1973) Performance and conservation of osmotic work by proton-coupled solute porter systems.Bioenerg. 4: 63–91.

    Google Scholar 

  • Mitchell, P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems.J. Theoret. Biol. 62: 327–367.

    Google Scholar 

  • Mitchell, P. (1977) Epilogue: from energetic abstraction to biochemical mechanism.Symp. Soc. Gen. Microbiol. 27: 383–423.

    Google Scholar 

  • Mitchell, P. (1979) Direct chemiosmotic ligand conduction mechanisms in protonmotive complexes. In:Membrane Bioenergetics (Lee, C. P., et al., Eds.), Addison-Wesley, Reading, Mass., pp. 361–372.

    Google Scholar 

  • Mitchell, P. (1981a) Bioenergetic aspects of unity in biochemistry: evolution of the concept of ligand conduction in chemical, osmotic and chemiosmotic reaction mechanisms. In:Of Oxygen Fuels and Living Matter, Part 1 (Semenza, G., Ed.), John Wiley & Sons Ltd, London, pp. 1–160.

    Google Scholar 

  • Mitchell, P. (1981b) From black-box bioenergetics to molecular mechanics: Vectorial ligand-conduction mechanisms in biochemistry. In:Chemiosmotic Proton Circuits in Biological Membranes (Skulachev, V. P. and Hinkle, P., Eds.), Addison-Wesley, Reading, Mass, pp. 611–633.

    Google Scholar 

  • Mitchell, P. (1981c) Ubiquinone, bioenergetics and the still point of the turning cycle. In:Biomedical and Clinical Aspects of Coenzyme Q, Vol. 3 (Folkers, K. and Yamamura, Y., Eds.), Elsevier/North-Holland, Amsterdam, pp. 3–15.

    Google Scholar 

  • Mitchell, P. (1981d) Biochemical mechanism of protonmotivated phosphorylation in F0F1 adenosine triphosphatase molecules. In:Mitochondria and Microsomes. (Lee, C. P. et al., Eds.). Addison-Wesley, Reading, Mass, pp. 427–457.

    Google Scholar 

  • Mitchell, P. (1981e) Davy's electrochemistry: Nature's protochemistry.Chem in Britain 17: 14–23.

    Google Scholar 

  • Mitchell, P. (1982) Osmoenzymology: the study of molecular machines. In:Cell Function and Differentiation, Part B (Akoyunoglou, G., et al. Eds.). Alan, R. Liss, New York, pp. 399–408.

    Google Scholar 

  • Mitchell, P. (1984) Chemiosmosis: a term of abuse.TIBS 9: 205.

    Google Scholar 

  • Mitchell, P. (1985) The correlation of chemical and osmotic forces in biochemistry.J. Biochem. 97: 1–18.

    Google Scholar 

  • Mitchell, P. (1987a) Respiratory chain systems in theory and practice. In:Advances in Membrane Biochemistry and Bioenergetics (Kim, C. H. et al., Eds.). Plenum Press, New York, pp. 3–52.

    Google Scholar 

  • Mitchell, P. (1987b) Realistic models of transport processes. In:Integration and Control of Metabolic Processes: Pure and Applied Aspects (Kon, O. L. et al., Eds.). University Press, Cambridge, pp. 231–245.

    Google Scholar 

  • Mitchell, P. (1987c) A new redox loop formality involving metal-catalysed hydroxide-ion translocation: A hypothetical Cu loop formality for cytochrome oxidase.FEBS Lett. 222: 235–245.

    Google Scholar 

  • Mitchell, P. (1988) Possible protonmotive osmochemistry in cytochrome oxidase. In:Cytochrome Oxidase: Structure, Function and Physiopathology. Ann. N.Y. Acad. Sci. 550: 185–198.

  • Mitchell, P. (1990a) The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron-driven proton translocation. In:Highlights in Ubiquinone Research (Lenaz, O., et al., Eds.). Taylor & Francis, London, pp. 77–82.

    Google Scholar 

  • Mitchell, P. (1990b) Osmochemistry of solute translocation.Res. Microbiol. 141: 286–289 and 384–385.

    Google Scholar 

  • Mitchell, P. (1991) The vital protonmotive role of coenzyme Q. In:Biomedical and Clinical Aspects of Coenzyme Q Vol. 6 (Folkers, K., et al., Eds.). Elsevier, Amsterdam, pp. 3–10.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1951) The Glycerophospho-protein Complex Envelope ofMicrococcus Pyogenes.J. Gen. Microbiol. 5: 981–992.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1956a) Permeation mechanisms in bacterial membranes.Faraday Soc. Discussions. 21: 258–265.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1956b) Osmotic function and structure in bacteria.Symp. Soc. Gen. Microbiol. 6: 150–180.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1957) Autolytic release and osmotic properties of ‘protoplasts’ fromStaphylococcus aureus.J. Gen. Microbiol. 16: 184–194.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958a). Group translocation: a consequence of enzyme-catalysed group transfer.Nature 182: 372–373.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958b) Enzyme catalysis and group translocation.Proc. Roy. Phys. Soc. Edinb. 27: 61–72.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1974) The mechanism of proton translocation in reversible proton-translocating adenosine triphosphatases.Biochem. Soc. Spec. Publ. 4: 91–111.

    Google Scholar 

  • Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H. and Wrigglesworth, J. (1985) Chemiosmotic coupling in cytochrome oxidase: possible O loop and O cycle mechanisms.FEBS Lett. 188: 1–7.

    Google Scholar 

  • Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. and Dutton, P. L. (1992) The nature of biological electron transfer.Nature,355: 796–802.

    Google Scholar 

  • Negeli, K. and Cramer, K. (1855–8) Series of papers. Pflanzenphysiol. Untersuchungen: Zurich Nos. 1–4.

  • Nernst, W. (1897) Zwei einfache elektrochemische Vorlesungsversuche.Z. Elektrochem. 3: 308–309.

    Google Scholar 

  • Ogston, A. G. (1955) Activation and inhibition of enzymes.Faraday Soc. Discussions 20: 161–167.

    Google Scholar 

  • Overton, E. (1895) Ueber die osmotischen Eigenschaften der lebenden Pflanzen- und Tierzelle.Vierteljahrsschr. der naturforsch.Ges. in Zurich 40: 159–201.

    Google Scholar 

  • Overton, E. (1899) Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedoutung für die Physiologie,Vierteljahrsschr. der naturforsch.Ges. in Zurich 44: 88–135.

    Google Scholar 

  • Overton, E. (1902) Beiträge zur allgemeinen Muskel- und Nervenphysiologie.Pfluger's Arch. ges. Physiol. 92: 115–280.

    Google Scholar 

  • Pauling, L. (1950) Chemical achievement and hope for the future.Annu. Rep. Smithsonian Inst. 225–241.

  • Pauling, L. (1956) The future of enzyme research. In:Enzymes: Units of Biological Structure and Function (Gaebler, O. H., Ed.). Academic Press, New York, pp. 177–182.

    Google Scholar 

  • Penefsky, H. S. (1985) Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase.J. Biol. Chem. 260: 13735–13741.

    Google Scholar 

  • Racker, E. (1965)Mechanisms in Bioenergetics. Academic Press, New York and London.

    Google Scholar 

  • Racker, E. (1976)A New Look at Mechanisms in Bioenergetics. Academic Press, New York.

    Google Scholar 

  • Rice, O. K. and Gershinowitz, H. (1934) Entropy and the absolute rate of chemical reactions. I. The steric factor.J. Chem. Phys. 2: 853–861.

    Google Scholar 

  • Rich, P. R. (1991) The osmochemistry of electron-transfer complexes.Biosci. Reps. 11: 539–571.

    Google Scholar 

  • Robertson, R. N. (1951) Mechanism of absorption and transport of inorganic nutrients in plants.Annu. Rev. Plant Physiol. 2: 1–24.

    Google Scholar 

  • Rosenberg, T. (1948) On accumulation and active transport in biological systems.Acta Chem. Scand. 2: 14–33.

    Google Scholar 

  • Rosenberg, T. (1954) The concept and definition of active transport.Symp. Soc. Exp. Biol. 8: 27–41.

    Google Scholar 

  • Saier, M. H., Jr. and Reizer, J. (1990) Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system.Res. Microbiol. 141: 1033–1038.

    Google Scholar 

  • Scarborough, G. A. (1985) Binding energy, conformational change, and the mechanism of transmembrane solute movements.Microbiol. Rev. 49: 214–231.

    Google Scholar 

  • Senior, A. E. (1990) The proton-translocating ATPases ofEscherichia coli.Annu. Rev. Biophys. Chem. 19: 7–41.

    Google Scholar 

  • Siekevitz, P. (1959) On the metabng of intracellular structure for metabolic regulation. In:Regulation of Cell Metabolism (Wolstenholme, G. E. W. and O'Connor, C. M., Eds.). J. and A. Churchill, Ltd, London, pp. 17–45.

    Google Scholar 

  • Silverman, M. (1991) Structure and function of hexose transporters.Annu. Rev. Biochem. 60: 757–794.

    Google Scholar 

  • Skulachev, V. P. (1991) Chemiosmotic systems in bioenergetics.Biosci. Reps. 11: 387–444.

    Google Scholar 

  • Tanford, C. (1983) Mechanism of free energy coupling in active transport.Annu. Rev. Biochem. 52: 379–409.

    Google Scholar 

  • Theorell, T. (1949) Permeability.Annu. Rev. Physiol. 11: 545–564.

    Google Scholar 

  • Ussing, H. H. (1947). Interpretation of the exchange of radio-sodium in isolated muscle.Nature 160: 262–263.

    Google Scholar 

  • Ussing, H. H. (1949) Transport of ions across cellular membranes.Physiol. Rev. 29: 127–155.

    Google Scholar 

  • Ussing, H. H. (1950) The distinction by means of tracers between active transport and diffusion.Acta Physiol. Scand. 19: 43–56.

    Google Scholar 

  • van't Hoff, J. H. (1887) Die Rolle des osmotischen Druckes, in der Analogie zwischen Losungen und Gasen.Z. Physikal. Chem. 1: 481–508.

    Google Scholar 

  • Wikström, M. K. F. (1977) Proton pump coupled to cytochromec oxidase in mitochondria.Nature 266: 271–273.

    Google Scholar 

  • Wu, L.-F. and Saier, M. H., Jr. (1990) On the evolutionary origins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.Mol. Microbiol. 4: 1219–1222.

    Google Scholar 

  • Wyman, J. (1948) Heme proteins.Adv. Protein Chem. 4: 407–531.

    Google Scholar 

  • Wyman, J. (1964) Linked functions and reciprocal effects in hemoglobin: a second look.Adv. Protein Chem. 19: 223–286.

    Google Scholar 

  • Wyman, J. (1965) The binding potential, a neglected linkage concept.J. Mol. Biol. 11: 631–644.

    Google Scholar 

Reference

  • Laubinger, W., Deckers-Herberstreit, G., Altendorf, K. and Dimroth, P. (1990) A hybrid ATPase composed of F1 ofEscherichia coli and F0 ofPropionigenium modestum is a functional sodium ion pump.Biochem. 29: 5458–5463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, P. Foundations of vectorial metabolism and osmochemistry. Biosci Rep 11, 297–346 (1991). https://doi.org/10.1007/BF01130212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130212

Key Words

Navigation