Skip to main content
Log in

Effect of Sorbitol on Alpha-Crystallin Structure and Function

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Loss of eye lens transparency due to cataract is the leading cause of blindness all over the world. While aggregation of lens crystallins is the most common endpoint in various types of cataracts, chaperone-like activity (CLA) of α-crystallin preventing protein aggregation is considered to be important for maintaining the eye lens transparency. Osmotic stress due to increased accumulation of sorbitol under hyperglycemic conditions is believed to be one of the mechanisms for diabetic cataract. In addition, compromised CLA of α-crystallin in diabetic cataract has been reported. However, the effect of sorbitol on the structure and function of α-crystallin has not been elucidated yet. Hence, in the present exploratory study, we described the effect of varying concentrations of sorbitol on the structure and function of α-crystallin. Alpha-crystallin purified from the rat lens was incubated with varying concentrations of sorbitol in the dark under sterile conditions for up to 5 days. At the end of incubation, structural properties and CLA were evaluated by spectroscopic methods. Interestingly, different concentrations of sorbitol showed contrasting results: at lower concentrations (5 and 50 mM) there was a decrease in CLA and subtle alterations in secondary and tertiary structure but not at higher concentrations (500 mM). Though, these results shed a light on the effect of sorbitol on α-crystallin structure–function, further studies are required to understand the mechanism of the observed effects and their implication to cataractogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AR:

aldose reductase

CD:

circular dichroism

CLA:

chaperone-like activity

DSC:

differential scanning calorimetry

References

  1. Pascolini, D., and Mariotti, S. P. (2012) Global estimates of visual impairment: 2010, Br. J. Ophthalmol., 96, 614-618, https://doi.org/10.1136/bjophthalmol-2011-300539.

    Article  PubMed  Google Scholar 

  2. Congdon, N. G., Friedman, D. S., and Lietman, T. (2003) Important causes of visual impairment in the world today, JAMA, 290, 2057-2060, https://doi.org/10.1001/jama.290.15.2057.

    Article  CAS  PubMed  Google Scholar 

  3. Asbell, P. A., Dualan, I., Mindel, J., Brocks, D., Ahmad, M., et al. (2005) Age-related cataract, Lancet, 365, 599-609, https://doi.org/10.1016/S0140-6736(05)17911-2.

    Article  PubMed  Google Scholar 

  4. Drinkwater, J. J., Davis, W. A., and Davis, T. M. E. (2019) A systematic review of risk factors for cataract in type 2 diabetes, Diabetes Metab. Res. Rev., 35, e3073, https://doi.org/10.1002/dmrr.3073.

    Article  PubMed  Google Scholar 

  5. International Diabetes Federation (2019) IDF Diabetes Atlas 2019, 9th Edn., World Health Organisation, URL: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.

  6. Wistow, G. J., and Piatigorsky, J. (1988) Lens crystallins: The evolution and expression of proteins for a highly specialized tissue, Annu. Rev. Biochem., 57, 479-504, https://doi.org/10.1146/annurev.bi.57.070188.002403.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, G. B., Kumar, P. A., and Kumar, M. S. (2006) Chaperone-like activity and hydrophobicity of alpha-crystallin, IUBMB Life, 58, 632-641, https://doi.org/10.1080/15216540601010096.

    Article  CAS  PubMed  Google Scholar 

  8. Reddy, V. S., and Reddy, G. B. (2016) Role of crystallins in diabetic complications, Biochim. Biophys. Acta, 1860, 269-277, https://doi.org/10.1016/j.bbagen.2015.05.009.

    Article  CAS  PubMed  Google Scholar 

  9. Srinivas, P. N., Reddy, P. Y., and Reddy, G. B. (2008) Significance of alpha-crystallin heteropolymer with a 3 : 1 alphaA/alphaB ratio: Chaperone-like activity, structure and hydrophobicity, Biochem. J., 414, 453-460, https://doi.org/10.1042/BJ20080544.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, P. A., and Reddy, G. B. (2009) Modulation of alpha-crystallin chaperone activity: A target to prevent or delay cataract? IUBMB life, 61, 485-495, https://doi.org/10.1002/iub.176.

    Article  CAS  PubMed  Google Scholar 

  11. Horwitz, J. (2003) Alpha-crystallin, Exp. Eye Res., 76, 145-153, https://doi.org/10.1016/s0014-4835(02)00278-6.

    Article  CAS  PubMed  Google Scholar 

  12. Yan, H., Harding, J. J., Hui, Y. N., and Li, M. Y. (2003) Decreased chaperone activity of alpha-crystallin in selenite cataract may result from selenite-induced aggregation, Eye, 17, 637-645, https://doi.org/10.1038/sj.eye.6700419.

    Article  CAS  PubMed  Google Scholar 

  13. Kelley, M. J., David, L. L., Iwasaki, N., Wright, J., and Shearer, T. R. (1993) alpha-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract, J. Biol. Chem., 268, 18844-18849.

    Article  CAS  Google Scholar 

  14. Kumar, P. A., Suryanarayana, P., Reddy, P. Y., and Reddy, G. B. (2005) Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin, Mol. Vis., 11, 561-568.

    CAS  PubMed  Google Scholar 

  15. Huang, F. Y., Ho, Y., Shaw, T. S., and Chuang, S. A. (2000) Functional and structural studies of alpha-crystallin from galactosemic rat lenses, Biochem. Biophys. Res. Commun., 273, 197-202, https://doi.org/10.1006/bbrc.2000.2924.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, P. A., Kumar, M. S., and Reddy, G. B. (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function, Biochem. J., 408, 251-258, https://doi.org/10.1042/BJ20070989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., et al. (2004) Ageing and vision: Structure, stability and function of lens crystallins, Progr. Biophys. Mol. Biol., 86, 407-485, https://doi.org/10.1016/j.pbiomolbio.2003.11.012.

    Article  CAS  Google Scholar 

  18. Abraham, E. C., Swamy, M. S., and Perry, R. E. (1989) Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging, Progr. Clin. Biol. Res., 304, 123-139.

    CAS  Google Scholar 

  19. Brownlee, M., Vlassara, H., and Cerami, A. (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications, Ann. Int. Med., 101, 527-537, https://doi.org/10.7326/0003-4819-101-4-527.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, M. S., Reddy, P. Y., Kumar, P. A., Surolia, I., and Reddy, G. B. (2004) Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: Physiological significance and caveats of in vitro aggregation assays, Biochem. J., 379, 273-282, https://doi.org/10.1042/BJ20031633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chitra, P. S., Chaki, D., Boiroju, N. K., Mokalla, T. R., Gadde, A. K., et al. (2020) Status of oxidative stress markers, advanced glycation index, and polyol pathway in age-related cataract subjects with and without diabetes, Exp. Eye Res., 200, 108230, https://doi.org/10.1016/j.exer.2020.108230.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar, P. A., and Reddy, G. B (2007) Focus on molecules: Aldose reductase, Exp. Eye Res., 85, 739-740, https://doi.org/10.1016/j.exer.2006.08.002.

    Article  CAS  Google Scholar 

  23. Varma, S. D., Kumar, S., and Richards, R. D. (1979) Light-induced damage to ocular lens cation pump: Prevention by vitamin C, Proc. Natl. Acad. Sci. USA, 76, 3504-3506, https://doi.org/10.1073/pnas.76.7.3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thampi, P., Zarina, S., and Abraham, E. C. (2002) alpha-Crystallin chaperone function in diabetic rat and human lenses, Mol. Cell. Biochem., 229, 113-118, https://doi.org/10.1023/a:1017980713089.

    Article  CAS  PubMed  Google Scholar 

  25. Cherian, M., and Abraham, E. C. (1995) Diabetes affects alpha-crystallin chaperone function, Biochem. Biophys. Res. Commun., 212, 184-189, https://doi.org/10.1006/bbrc.1995.1954.

    Article  CAS  PubMed  Google Scholar 

  26. Srinivas, P., Narahari, A., Petrash, J. M., Swamy, M. J., and Reddy, G. B. (2010) Importance of eye lens alpha-crystallin heteropolymer with 3:1 alphaA to alphaB ratio: Stability, aggregation, and modifications, IUBMB Life, 62, 693-702, https://doi.org/10.1002/iub.373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snow, A., Shieh, B., Chang, K. C., Pal, A., Lenhart, P., et al. (2015) Aldose reductase expression as a risk factor for cataract, Chem. Biol. Interact., 234, 247-253, https://doi.org/10.1016/j.cbi.2014.12.017.

    Article  CAS  PubMed  Google Scholar 

  28. Pfeifer, M. A., Schumer, M. P., and Gelber, D. A. (1997) Aldose reductase inhibitors: the end of an era or the need for different trial designs? Diabetes, 46 Suppl. 2, S82-S89, https://doi.org/10.2337/diab.46.2.s82.

    Article  PubMed  Google Scholar 

  29. Suryanarayana, P., Saraswat, M., Petrash, J. M., and Reddy, G. B. (2007) Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats, Mol. Vis., 13, 1291-1297.

    CAS  PubMed  Google Scholar 

  30. Akileshwari, C., Raghu, G., Muthenna, P., Mueller, N. H., Suryanaryana, P., et al. (2014) Bioflavonoid ellagic acid inhibits aldose reductase: Implications for prevention of diabetic complications, J. Funct. Foods, 6, 374-383, https://doi.org/10.1016/j.jff.2013.11.004.

    Article  CAS  Google Scholar 

  31. Kumar, M. S., Kapoor, M., Sinha, S., and Reddy, G. B. (2005) Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: An isothermal titration calorimetric study, J. Biol. Chem., 280, 21726-21730, https://doi.org/10.1074/jbc.M500405200.

    Article  CAS  PubMed  Google Scholar 

  32. Das, K. P., and Surewicz, W. K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin, FEBS Lett., 369, 321-325, https://doi.org/10.1016/0014-5793(95)00775-5.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, P. Y., Giridharan, N. V., and Reddy, G. B. (2012) Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats, Mol. Vis., 18, 495-503.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Randazzo, J., Zhang, P., Makita, J., Blessing, K., and Kador, P. F. (2011) Orally active multi-functional antioxidants delay cataract formation in streptozotocin (type 1) diabetic and gamma-irradiated rats, PLoS One, 6, e18980, https://doi.org/10.1371/journal.pone.0018980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haque, I., Singh, R., Moosavi-Movahedi, A. A., and Ahmad, F. (2005) Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values, Biophys. Chem., 117, 1-12, https://doi.org/10.1016/j.bpc.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  36. Xie, G., and Timasheff, S. N. (1997) Mechanism of the stabilization of ribonuclease A by sorbitol: Preferential hydration is greater for the denatured then for the native protein, Protein Sci., 6, 211-221, https://doi.org/10.1002/pro.5560060123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan, S. H., Ahmad, N., Ahmad, F., and Kumar, R. (2010) Naturally occurring organic osmolytes: From cell physiology to disease prevention, IUBMB Life, 62, 891-895, https://doi.org/10.1002/iub.406.

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira, L. A., Uversky, V. N., and Zaslavsky, B. Y. (2017) Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes, Mol. bioSystems, 13, 2551-2563, https://doi.org/10.1039/c7mb00436b.

    Article  CAS  Google Scholar 

  39. Beeley, L. (1983) Assessing new drugs, Practitioner, 227, 1527-1534.

    CAS  PubMed  Google Scholar 

  40. Williamson, J. (2012) Linking diabetic complications to sorbitol oxidation, oxidative stress and metabolic suppression, J. Diab. Metab., 3, 219, https://doi.org/10.4172/2155-6156.1000219.

    Article  CAS  Google Scholar 

  41. Cherian, M., and Abraham, E. C. (1995) Decreased molecular chaperone property of alpha-crystallins due to posttranslational modifications, Biochem. Biophys. Res. Commun., 208, 675-679, https://doi.org/10.1006/bbrc.1995.1391.

    Article  CAS  PubMed  Google Scholar 

  42. Plater, M. L., Goode, D., and Crabbe, M. J. (1997) Ibuprofen protects alpha-crystallin against posttranslational modification by preventing protein cross-linking, Ophthalm. Res., 29, 421-428, https://doi.org/10.1159/000268043.

    Article  CAS  Google Scholar 

  43. Peluso, G., Petillo, O., Barbarisi, A., Melone, M. A., Reda, E., et al. (2001) Carnitine protects the molecular chaperone activity of lens alpha-crystallin and decreases the post-translational protein modifications induced by oxidative stress, FASEB J., 15, 1604-1606, https://doi.org/10.1096/fj.00-0727fje.

    Article  CAS  PubMed  Google Scholar 

  44. Rajan, S., Horn, C., and Abraham, E. C. (2006) Effect of oxidation of alphaA- and alphaB-crystallins on their structure, oligomerization and chaperone function, Mol. Cell. Biochem., 288, 125-134, https://doi.org/10.1007/s11010-006-9128-4.

    Article  CAS  PubMed  Google Scholar 

  45. Verma, G., Singh, P., and Bhat, R. (2020) Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins, Biophys. Chem., 264, 106422, https://doi.org/10.1016/j.bpc.2020.106422.

    Article  CAS  PubMed  Google Scholar 

  46. Aravindan, S., Chen, S., Choudhry, H., Molfetta, C., Chen, K. Y., et al. (2020) Osmolytes dynamically regulate mutant Huntingtin aggregation and CREB function in Huntington’s disease cell models, Sci. Rep., 10, 15511, https://doi.org/10.1038/s41598-020-72613-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reddy, P. Y., Giridharan, N. V., Balakrishna, N., Validandi, V., Pullakhandam, R., et al. (2013) Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol, IUBMB Life, 65, 472-478, https://doi.org/10.1002/iub.1163.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GBR is supported by grants from the Indian Council of Medical Research, the Department of Biotechnology and the Science & Engineering Research Board, Government of India. Research done at the University of Hyderabad was supported by University Grants Commission (India) through UPE-II and CAS programs, and the Department of Science and Technology (India) through the PURSE and FIST programs. CUK and US are supported by a research fellowship from the Indian Council of Medical Research and VS is supported by a research fellowship from the Council for Scientific & Industrial Research, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bhanuprakash Reddy.

Ethics declarations

The authors declare no conflicts of interest. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C.U., Suryavanshi, U., Sontake, V. et al. Effect of Sorbitol on Alpha-Crystallin Structure and Function. Biochemistry Moscow 87, 131–140 (2022). https://doi.org/10.1134/S0006297922020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020055

Keywords

Navigation