Skip to main content
Log in

CRISPR/Cas Genome Editing in Filamentous Fungi

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

CRISPR/Cas:

clustered regularly interspaced short palindromic repeats and CRISPR-associated protein

DSB:

double-strand break

HDV:

hepatitis D virus

HH:

hammerhead

HR:

homologous recombination

NHEJ:

non-homologous end joining

NLS:

nuclear localization sequence

sgRNA:

single guide RNA

tracrRNA:

trans-activating CRISPR RNA

References

  1. Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., and van den Hondel, C. (2002) Filamentous fungi as cell factories for heterologous protein production, Trends Biotechnol., 20, 200-206.

    Article  CAS  PubMed  Google Scholar 

  2. Ward, O. P. (2012) Production of recombinant proteins by filamentous fungi, Biotechnol. Adv., 30, 1119-1139, https://doi.org/10.1016/j.biotechadv.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  3. Lubertozzi, D., and Keasling, J. D. (2008) Developing Aspergillus as a host for heterologous expression, Biotechnol. Adv., 27, 53-57, https://doi.org/10.1016/j.biotechadv.2008.09.001.

    Article  CAS  PubMed  Google Scholar 

  4. Meyer, V. (2008) Genetic engineering of filamentous fungi – progress, obstacles, expression, Biotechnol. Adv., 26, 177-185, https://doi.org/10.1016/j.biotechadv.2007.12.001.

    Article  CAS  PubMed  Google Scholar 

  5. De Vries, R. (2003) Regulation of Aspergillus genes encoding plant cell wall degrading enzymes: relevance for industrial production, Appl. Microbiol. Biotechnol., 61, 10-20, https://doi.org/10.1007/s00253-002-1171-9.

    Article  CAS  PubMed  Google Scholar 

  6. Schuster, A., and Schmoll, M. (2010) Biology and biotechnology of Trichoderma, Appl. Microbiol. Biotechnol., 87, 787-799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar, R., Singh, S., Singh, O. V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives, J. Industr. Microbiol. Biotechnol., 35, 377-391.

    Article  CAS  Google Scholar 

  8. Sinitsyn, A. P., and Rozhkova, A. M. (2015) Penicillium canescens host as the platform for development of new recombinant strains producers of carbohydrases, in Microbiology Monographs, “Microorganisms in Biorefineries” (Kamm, B., ed.) Springer, USA, pp. 1-19.

  9. Sinitsyn, A. P., Sinitsyna, O. A., and Rozhkova, A. M. (2020) Production of industrially important enzyme using Penicillium verruculosum expression system, Biotechnologiya, 36, 17-34.

    Google Scholar 

  10. Harris, D. M, Westerlaken, I., Schipper, D., van der Krogt, Z. A., Gombert, A. K., and Sutherland, J. (2009) Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor, Metabol. Engin., 11, 125-137.

    Article  CAS  Google Scholar 

  11. Ozcengiz, G., and Demain, A. L. (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation, Biotechnol. Adv., 31, 287-311.

    Article  CAS  PubMed  Google Scholar 

  12. Corrêa, R. C. G, Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., et al. (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers, J. Ind. Microbiol. Biotechnol., 41, 1467-1478, https://doi.org/10.1007/s10295-014-1496-2.

    Article  CAS  PubMed  Google Scholar 

  13. Toghueo, R. M. K., and Boyom, F. F. (2020) Endophytic Penicillium species nd their agricultural, biotechnological and pharmaceutical application, 3 Biotech, 10, 1-35, https://doi.org/10.1007/s13205-020-2081-1.

    Article  Google Scholar 

  14. Dashtban, M., Schraft, H., and Qin, W. (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives, Int. J. Biol. Sci., 5, 6, 578-595, https://doi.org/10.7150/ijbs.5.578.

    Article  PubMed  Google Scholar 

  15. Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., et al. (2018) Applications of microbial enzymes in food industry, Food Technol. Biotechnol., 56, 16-30, https://doi.org/10.17113/ftb.56.01.18.5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacKenzie, D. A., Jeenes, D. J., and Archer, D. B. (2004) Filamentous Fungi as Expression Systems for Heterologous Proteins, Genetics and Biotechnology (2nd Edn.) Springer-Verlag Berlin-Heidelberg, pp. 289-315.

  17. Kluge, J., Terfehr, D., and Kuck, U. (2018) Inducible promoters and functional genomic approaches for genetic engineering of filamentous fungi, Appl. Microbiol. Biotechnol., 102, 6357-6372, https://doi.org/10.1007/s00253-018-9115-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Penttilä, M. (1998) Heterologous protein production in Trichoderma, in Trichoderma and Gliocladium (Kubicek, C. P., and Harman, G. E., eds) Taylor and Francis Ltd., London.

  19. Siedenberg, D., Mestric, S., Ganzlin, M., Schmidt, M., Punt, P. J., et al. (1999) GlaA promoter controlled production of a mutant green fluorescent protein (S65T) by recombinant Aspergillus niger during growth on defined medium in batch and fed-batch cultures, Biotechnol. Progr., 15, 43-50, https://doi.org/10.1021/bp980105u.

    Article  CAS  Google Scholar 

  20. Bulakhov, A. G., Volkov, P. V., Rozhkova, A. M., Gusakov, A. V., Nemashkalov, V. A., et al. (2017) Using an inducible promoter of a gene encoding Penicillium verruculosum glucoamylase for production of enzyme preparations with enhanced cellulase performance, PLoS One, 12, e0170404, https://doi.org/10.1371/journal.pone.0170404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., and Vienken, K. (2004) Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY), Curr. Genet., 45, 383-389.

    Article  CAS  PubMed  Google Scholar 

  22. Dotsenko, G. S., Gusakov, A. V., Rozhkova, A. M., Korotkova, O. G., and Sinitsyn, A. P. (2015) Heterologous beta-glucosidase in a fungal cellulase system: comparison of different methods for development of multienzyme cocktails, Process Biochem., 50, 1258-1263, https://doi.org/10.1016/j.procbio.2015.05.008.

    Article  CAS  Google Scholar 

  23. Landowski, C. P., Huuskonen, A., Wahl, R., Westerholm-Parvinen, A., Kanerva, A., et al. (2015) Enabling cost biopharmaceuticals: a systematic approach to delete proteases from a well-known protein production host Trichoderma reesei, PLoS One, 10, e0134723.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gallo, A., Bruno, K. S., Solfrizzo, M., Perrone, G., Mule, G., Visconti, A., and Baker, S. (2012) New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius, Appl. Environ. Microbiol., 78, 8208-8218, https://doi.org/10.1128/AEM.02508-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ling, S. O. S., Storms, R., Zheng, Yu., Rodzi, M. R. M., Mahadi, N. M., et al. (2013) Development of a pyrG mutant of Aspergillus oryzae strain S1 as a host for the production of heterologous proteins, Sci. World J., 2013, 634317, https://doi.org/10.1155/2013/634317.

    Article  CAS  Google Scholar 

  26. Tanaka, M., Ichinose, S., Shintani, T., and Gomi, K. (2018) Nuclear export-dependent degradation of the carbon catabolite repressor CreA is regulated by a region located near the C-terminus in Aspergillus oryzae, Mol. Microbiol., 110, 176-190, https://doi.org/10.1111/mmi.14072.

    Article  CAS  PubMed  Google Scholar 

  27. Todd, R., Lockington, R., and Kelly, J. (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein, Mol. Genet. Genom., 263, 561-570, https://doi.org/10.1007/s004380051202.

    Article  CAS  Google Scholar 

  28. Tamayo-Ramos, J. A., and Orejas, M. (2014) Enhanced glycosyl hydrolase production in Aspergillus nidulans using transcription factor engineering approaches, Biotechnol. Biofuels, 7, 103, https://doi.org/10.1186/1754-6834-7-103.

    Article  Google Scholar 

  29. Tani, S., Katsuyama, Y., Hayashi, T., Suzuki, H., Kato, M., et al. (2001) Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans, Curr. Genet., 39, 10-15, https://doi.org/10.1007/s002940000175.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, L., Liu, J., Qiu, R. X., Zhu, X. G., Dong, Z. Y., and Tang, G. M. (2003) Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter, Lett. Appl. Microbiol., 36, 358-361.

    Article  CAS  PubMed  Google Scholar 

  31. Zou, G., Shi, S., Jiang, Y., van den Brink, J., de Vries, R. P., et al. (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering, Microb. Cell Factories, 11, 21.

    Article  CAS  Google Scholar 

  32. Sun, X., Zhang, X., Huang, H., Wang, Y., Tu, T., et al. (2020) Engineering the cbh1 promoter of Trichoderma reesei for enhanced protein production by replacing the binding sites of a transcription repressor ACE1 to those of the activators, J. Agricult. Food Chem., 68, 1337-1346, https://doi.org/10.1021/acs.jafc.9b05452.

    Article  CAS  Google Scholar 

  33. Weld, R. J., Plummer, K. M., Carpenter, M. A., and Ridgway, H. J. (2006) Approaches to functional genomics in filamentous fungi, Cell Res., 16, 31-44, https://doi.org/10.1038/sj.cr.7310006.

    Article  CAS  PubMed  Google Scholar 

  34. Krappmann, S., Sasse, C., and Braus, G. H. (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background, Eukaryot. Cell, 5, 212-215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer, V., Arentshorst, M., El-Ghezal, A., Drews, A. C., Kooistra, R., and van den Hondel, C. A. (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant, J. Biotechnol., 128, 770-775.

    Article  CAS  PubMed  Google Scholar 

  36. Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H. (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proc. Natl. Acad. Sci. USA, 101, 12248-12253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, G., Zhang, J., and Bao, J. (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling, Bioproc. Biosyst. Engin., 39, 133-140.

    Article  Google Scholar 

  38. Hu, Y., and Zhu, B. (2016) Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer, Synth. Syst. Biotechnol., 1, 3143-3149, https://doi.org/10.1016/j.synbio.2016.09.002.

    Article  Google Scholar 

  39. Peterson, R., and Nevalainen, H. (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement, Microbiology, 158, 58-68, https://doi.org/10.1099/mic.0.054031-0.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, I., and Arnold, F. (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolase cellulase efficiently at elevated temperatures, Biotechnol. Bioengin., 110, 1874-1883, https://doi.org/10.1002/bit.24864.

    Article  CAS  Google Scholar 

  41. Bornscheuer, U. T., Hauer, B., Jaeger, K. E., and Schwaneberg, U. (2019) Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals, Angewande Chemie Int. Edn., 58, 36-40.

    Article  CAS  Google Scholar 

  42. Markel, U., Essani, K. D., Besirlioglu, V., Schiels, J., Streit, W. R., and Schwaneberg, U. (2020) Advances in ultrahigh-throughput screening for directed enzyme evolution, Chem. Soc. Rev., 49, 233-262.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, F., Li, J.-X., Champreda, V., Liu, C.-G., Bai, F.-W., and Zhao, X.-Q. (2020) Global reprogramming of gene transcription in Trichoderma reesei by overexpressing an artificial transcription factor for improved cellulase production and identification of Ypr1 as an associated regulator, Front. Bioengin. Biotechnol., 8, 649, https://doi.org/10.3389/fbioe.2020.00649.

    Article  Google Scholar 

  44. Künkel, W., Berger, D., Risch, S., and Wittmann-Bresinsky, B. (1992) Genetic instability of industrial strains of Penicillium chrysogenum, Appl. Microbiol. Biotechnol., 36, 499-502.

    Article  PubMed  Google Scholar 

  45. Contreras, F., Thiele, M. J., Pramanik, S., Rozhkova, A., Dotsenko, A. S., et al. (2020) KnowVolution of GH5 Cellulase from Penicillium verruculosum to improve thermal stability for biomass degradation, ACS Sustain. Chem. Engin., 8, 12388-12399, https://doi.org/10.1021/acssuschemeng.0c02465.

    Article  CAS  Google Scholar 

  46. Contreras, F., Pramanik, S., Rozhkova, A. M., Zorov, I. N., Korotkova, O. G., et al. (2020) Engineering robust cellulases for tailored lignocellulosic degradation cocktails, Int. J. Mol. Sci., 21, 1589, https://doi.org/10.3390/ijms21051589.

    Article  CAS  PubMed Central  Google Scholar 

  47. Larue, K., Melgar, M., and Martin, V. J. (2016) Directed evolution of a fungal beta-glucosidase in Saccharomyces cerevisiae, Biotechnol. Biofuels, 9, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hardiman, E., Gibbs, M., Reeves, R., and Bergquist, P. (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production, Appl. Biochem. Biotechnol., 161, 301-312.

    Article  CAS  PubMed  Google Scholar 

  49. Sontheimer, E. J., and Barrangou, R. (2015) Origins of the CRISPR genome-editing revolution, Hum. Gene Ther., 26, 413-424, https://doi.org/10.1089/hum.2015.091.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, L., Tang, L., Xiang, H., Jin, L., Li, Q., Dong, Y., et al. (2014) Advances in genome editing technology and its promising application in evolutionary and ecological studies, Gigasciences, 3, 24, https://doi.org/10.1186/2047-217X-3-24.

    Article  Google Scholar 

  51. Liu, W., An, Ch., Sgu, X., Meng, X., Yao, Y., et al. (2020) A dual-plasmid CRISPR/Cas System for mycotoxin elimination in polykaryotic industrial fungi, ACS Public., 9, 2087-2095, https://doi.org/10.1021/acssynbio.0c00178.

    Article  CAS  Google Scholar 

  52. Tyagi, S., Kumar, R., Das, A., Won, S.-Y., and Shukla, P. (2020) CRISPR-Cas9 system: a genome-editing tool with endless possibilities, J. Biotechnol., 319, 36-53, https://doi.org/10.1016/j.jbiotec.2020.05.008.

    Article  CAS  PubMed  Google Scholar 

  53. Mali, P, Esvelt, K. M., and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology, Nat. Methods, 10, 957-963, https://doi.org/10.1038/nmeth.2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basset, A. R., and Liu, J. L. (2014) CRISPR/Cas9 and genome editing in Drosophila, J. Genet. Genom., 41, 7-19, https://doi.org/10.1016/j.jgg.20013.12.004.

    Article  Google Scholar 

  55. Blackburn, P. R, Campbell, J. M, Clark, K. J., and Ekker, S. C. (2013) The CRISPR system-keeping zebrafish gene targeting fresh, Zebrafish, 10, 116-118, https://doi.org/10.1089/zeb.2013.9999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ebina, H., Misawa, N., Kanemura, Y., and Koyanagi, Y. (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus, Sci. Rep., 3, 2510, https://doi.org/10.1038/srep02510.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase conversation in Escherichia coli, and identification of the gene product, J. Bacteriol., 169, 5429-5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mojico, F. J., Diez-Villasenor, C., Soria, E., and Juez, G. (2000) Biological significans of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria, Mol. Microbiol., 36, 244-246.

    Article  Google Scholar 

  59. Jansen, R., van Embden, J. D. A., Gaastra, W., and Schlous, L. M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes, Mol. Microbiol., 43, 1565-1575.

    Article  CAS  PubMed  Google Scholar 

  60. Barrangou, R., Fremax, C., Deveau, H., Richards, M., Boyaval, P., et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709-1712.

    Article  CAS  PubMed  Google Scholar 

  61. Nødvig, C. S., Nielsen, J. B., Kogle, M. E., and Mortensen, U. H. (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi, PLoS One, 10, e0133085, https://doi.org/10.1371/journal.pone.0133085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., and Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR/Cas systems, Nucleic Acids Res., 41, 4336-4343, https://doi.org/10.1093/nar/gkt135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Horwitz, A. A., Walter, J. M., Schubert, M. G., and Kung, S. H. (2015) Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas, Cell Systems, 1, 88-96, https://doi.org/10.1016/j.cels.2015.02.001.

    Article  CAS  PubMed  Google Scholar 

  64. Curran, K. A., Crook, N., Karim, A., Gupta, A., Wagman, A., and Alpe, H. (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture, Nat. Commun., 5, 4002, https://doi.org/10.1038/ncomms5002.

    Article  CAS  PubMed  Google Scholar 

  65. Doudna, J. A., and Charpentier, E. (2014) The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1077-1087, https://doi.org/10.1126/science.1258096.

    Article  CAS  Google Scholar 

  66. Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2013) Tha basic building blocks and evoluation of CRISPR/CAS systems, Biochem. Soc. Trans., 41, 1392-1400, https://doi.org/10.1042/BST20130038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, S., Chen, H., Tang, X., Zhang, H., Chen, W., and Chen, Y. Q. (2017) Molecular tools for gene manipulation in filamentous fungi, Appl. Microbiol. Biotechnol., 101, 8063-8075, https://doi.org/10.1007/s00253-017-8486-z.

    Article  CAS  PubMed  Google Scholar 

  68. Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enchanced genome editing specificity, Cell, 154, 1380-1389, https://doi.org/10.1016/j.cell.2013.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsu, P. D., Lander, E. S., and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262-1278, https://doi.org/10.1016/j.cell.2014.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., et al. (2011) Evolution and classification of the CRISPR/Cas systems, Nat. Rev. Microbiol., 9, 467-477.

    Article  CAS  PubMed  Google Scholar 

  71. Haft, D. H., Selengut, J., Mongodin, E. F., and Nelson, K. E. (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR-Cas subtypes exist in prokaryotic genomes, PLoS Computat. Biol., 1, e60.

    Article  Google Scholar 

  72. Chylinsky, K., Le, R. A., and Charpentier, E. (2013) The tracrRNAand Cas9 families of type II CRISPR-Cas immunity systems, RNA Biol., 10, 726-737.

    Article  Google Scholar 

  73. Jinek, M., Chulinski, K., Fonfara, I., Hauer, M., Doudna, J., and Charpentier, E. A. (2012) Programmable dual-RNA-guided DNA endonuclease immunity, Science, 337, 816-821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014) Genome wide analysis reveals characteristics of off-target sites bound by Cas9 endonuclease, Nat. Biotechnol., 32, 677-683.

    Article  CAS  PubMed  Google Scholar 

  75. Cong, L., Ran, F. A., Cox, D., Lin, S., Barreto, R., and Habib, N. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 197-217.

    Article  Google Scholar 

  76. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., and Dicarlo, J. E. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823-826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang, F., Zhou, K., Ma, L., Gressel, S., and Doudna, J. A. (2015) A Cas9-guide RNA complex preorganaized for target DNA recognition, Science, 348, 1477-1481.

    Article  CAS  PubMed  Google Scholar 

  78. Huai, C., Li, G., Yao, R., Zhang, Y., Cao, M., et al. (2017) Structural insights into DNA cleavage activation of CRISPR-Cas9 system, Nat. Commun., 8, 1375.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stenberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62-67.

    Article  Google Scholar 

  80. Rutkauskas, M., Sinkunas, T., Songailiene, I., Tikhomirova, M. S., Siksnys, V., and Seidel, R. (2015) Directional R-loop formation by the CRISPR/Cas surveillance complex Cascade provides efficient off-target site rejection, Cell Rep., 10, 1534-1543.

    Article  CAS  PubMed  Google Scholar 

  81. Palermo, G., Miao, Y., Walker, R. C., Jinek, M., and McCammon, J. A. (2016) Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations, ACS Cent. Sci., 2, 756-763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sternberg, S. H., LaFrance, B., Kaplan, M., and Doudna, J. A. (2015) Conformational control of DNA target cleavage by CRISPR-Cas, Nature, 527, 110-113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nødvig, C. S., Hoof, J. B., Kogle, M. E., Jarczynska, Z. D., Lehmbeck, J., et al. (2018) Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli, Fungal Genet. Biol., 115, 78-89, https://doi.org/10.1016/j.fgb.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Q., Cobine, P. A., and Coleman, J. J. (2018) Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes, Fungal Genet. Biol., 117, 21-29, https://doi.org/10.1016/j.fgb.2018.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, J., Lai, Y., Wang, L., Zhai, S., Zou, G., et al. (2017) CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana, Sci. Rep., 8, 45763, https://doi.org/10.1038/srep45763.

    Article  CAS  PubMed  Google Scholar 

  86. Chen, B. X., Wei, T., Ye, Z. W., Yun, F., Kang, L. Z., et al. (2018) Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris, Front. Microbiol., 9, 1157, https://doi.org/10.3389/fmicb.2018.01157.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kislitsin, V. Yu., Chulkin, A. M., Sinel’nikov, I. G., Sinitsin, A. P., and Rozhkova, A. M. (2020) Expression of CAS9 complex of the CRISPR/CAS system for the genome editing of the filamentous fungus Penicillium verruculosum, Vestn. Mosk. Univ. Ser. 2, 61, 47-54.

    Google Scholar 

  88. Matsu-Ura, T., Baek, M., Kwon, J., and Hong, C. (2015) Efficient gene editing in Neurospora crassa with CRISPR technology, Fungal Biol. Biotechnol., 2, 1-7, https://doi.org/10.1186/s40694-015-0015-1.

    Article  Google Scholar 

  89. Sarkari, P., Marx, H., Blumhoff, M. L., Mattanovich, D., Sauer, M., and Steiger, M. G. (2017) An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger, Bioresour. Technol., 245, 1327-1333, https://doi.org/10.1016/j.biortech.2017.05.004.

    Article  CAS  PubMed  Google Scholar 

  90. Pohl, C., Kiel, J. A. K. W., Driessen, A. J. M., Bovenberg, R. A. L., and Nygard, Y. (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum, ACS Synthet. Biol., 5, 754-764, https://doi.org/10.1021/acssynbio.6b00082.

    Article  CAS  Google Scholar 

  91. Zhang, C., Meng, X., Wei, X., and Lu, L. (2016) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus, Fungal Genet. Biol., 86, 47-57, https://doi.org/10.1016/j.fgb.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  92. Katayama, T., Tanaka, Y., Okabe, T., Nakamura, H., Fujii, W., and Kitamoto, K. (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae, Biotechnol. Lett., 38, 637-642, https://doi.org/10.1007/s10529-015-2015-x.

    Article  CAS  PubMed  Google Scholar 

  93. Schuster, M., Schweizer, G., and Kahmann, R. (2018) Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes, Fungal Genet. Biol., 112, 21-30, https://doi.org/10.1016/j.fgb.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  94. Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R. (2016) Genome editing in Ustilago maydis using the CRISPR/Cas system, Fungal Genet. Biol., 89, 3-9, https://doi.org/10.1016/j.fgb.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  95. Deng, H., Gao, R., Liao, X., and Cai, Y. (2017) Characterization of a major facilitator superfamily transporter in Shiraia bambusicola, Res. Microbiol., 168, 664-672, https://doi.org/10.1016/j.resmic.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  96. Deng, H., Gao, R., Liao, X., and Cai, Y. (2017) Genome editing in Shiraia bambusicola using CRISPR-Cas9 system, J. Biotechnol., 259, 228-234, https://doi.org/10.1016/j.jbiotec.2017.06.1204.

    Article  CAS  PubMed  Google Scholar 

  97. Lee, C. M., Cradick, T. J., and Bao, G. (2016) The Neisseria meningitidis CRISPR/Cas System enables specific genome editing in mammalian cells, Mol. Ther., 24, 645-654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., et al. (2015) Cpf1 is a single RNA-guided endonuclease of class 3 CRISPR/Cas system, Cell, 163, 759-771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Swiat, M. A., Dashko, S., den Ridder, M., Wijsman, M., van der Oost, J., et al. (2017) FnCpf1: a novel and efficient genome editing tool for Saccaromyces cerevisiae, Nucleic Acid Res., 45, 12585-12598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, L., Li, X., Ma, J. Z., Li, Y., Wang, L., Wang, J., et al. (2017) The molecular architecture for RNA-Guided RNA cleavage by Cas13a, Cell, 170, 714-726.

    Article  CAS  PubMed  Google Scholar 

  101. Gao, Y., and Zhao, Y. (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol., 56, 343-349, https://doi.org/10.1111/jipb.12152.

    Article  CAS  PubMed  Google Scholar 

  102. Liang, Y., Han, Y., Wang, C., Jiang, C., and Xu, J. R. (2018) Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system, Front. Plant Sci., 9, 699, https://doi.org/10.3389/fpls.2018.00699.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zheng, X., Zheng, P., Zhang, K., Cairns, T. C., Meyer, V., Sun, J., and Ma, Y. (2018) 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger, ACS Synthet. Biol., 8, 1568-1574.

    Article  Google Scholar 

  104. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P., and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells, Mol. Cell, 54, 698-710, https://doi.org/10.1016/j.molcel.2014.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, J., Li, X., Zhao, Y., Li, J., Zhou, Q., and Liu, Z. (2015) Generation of cell-type-specific gene mutations by expressing the sgRNA of the CRISPR system from the RNA polymerase II promoters, Protein Cell, 6, 689-692, https://doi.org/10.1007/s13238-015-0169-x.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., et al. (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver, Nature, 514, 380-384, https://doi.org/10.1038/nature13589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi, T.-Q., Liu, G.-N., Ji, R.-Yu., Shi, K., Song, P., et al. (2017) CRISPR/Cas9-based genome editing of filamentous fungi: the state of the art, Appl. Microbiol. Biotechnol., 101, 7435-7443.

    Article  CAS  PubMed  Google Scholar 

  108. Huang, L., Dong, H., Zheng, J., Wang, B., and Pan, L. (2019) Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion, Microbiol. Res., 223, 44-50, https://doi.org/10.1016/j.micres.2019.03.007.

    Article  CAS  PubMed  Google Scholar 

  109. Liu, R., Chen, L., Jiang, Y., Zhou, Z., and Zou, G. (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system, Cell Discov., 1, 15007, https://doi.org/10.1038/celldisc.2015.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nielsen, M. L., Isbrandt, T., Rasmussen, K. B., Thrane, U., Hoof, J. B., and Larsen, T. O. (2017) Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9, PLoS One, 12, e0169712, https://doi.org/10.1371/journal.pone.0169712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Salazar-Cerezo, S., Kun, R. S., de Vries, R. P., and Garrigues, S. (2020) CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer, Enzyme Microb. Technol., 133, 109463, https://doi.org/10.1016/j.enzmictec.2019.109463.

    Article  CAS  PubMed  Google Scholar 

  112. Yamato, T., Handa, A., Arazoe, T., Kuroki, M., Nozaka, A., et al. (2019) Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus, Sci. Rep., 9, 1-8, https://doi.org/10.1038/s41598-019-43913-0.

    Article  CAS  Google Scholar 

  113. Liu, Q., Gao, R., Li, J., Lin, L., Zhao, J., et al. (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering, Biotechnol. Biofuels, 10, 1-14, https://doi.org/10.1186/s13068-016-0693-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fuller, K. K., Chen, S., Loros, J. J., and Dunlap, J. C. (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus, Eukaryot. Cell, 14, 1073-1080, https://doi.org/10.1128/EC.00107-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang, Y., and Tyler, B. M. (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9, Mol. Plant Pathol., 17, 127-139.

    Article  CAS  PubMed  Google Scholar 

  116. Kuivanen, J., Wang, Y.-M. J., and Richard, P. (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9, Microb. Cell Fact., 15, 210.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weyda, I., Yang, L., Vang, J., Ahring, B. K., Lubeck, M., and Lubeck, P. S. (2017) A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius, J. Microbiol. Methods, 135, 26-34.

    Article  CAS  PubMed  Google Scholar 

  118. Wenderoth, M., Pinecker, C., Voß, B., and Fischer, R. (2017) Establishment of CRISPR/Cas9 in Alternaria alternate, Fungal Genet. Biol., 101, 55-60.

    Article  CAS  PubMed  Google Scholar 

  119. Weber, J., Valiante, V., Nødvig, C. S., Mattern, D. J., Slotkowski, R. A., and Mortensen, U. H. (2017) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing, ACS Synthet. Biol., 6, 62-68, https://doi.org/10.1021/acssynbio.6b00203.

    Article  CAS  Google Scholar 

  120. Wu, C., Chen, Y., Qiu, Y., Niu, X., Zhu, N., et al. (2020) A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription, Biotechnol. Lett., 42, 1203-1210, https://doi.org/10.1007/s10529-020-02887-0.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, L., Zhao, X., Zhang, G., Zhang, J., Wang, X., et al. (2016) Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0, Sci. Rep., 6, 20761.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kocak, D. D., Josephs, E. A., Bhandarkar, V., Adkar, Sh., Kwon, J., and Gersbach, Ch. (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures, Nat. Biotechnol., 37, 657-666, https://doi.org/10.1038/s41587-019-0095-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cui, Y., Xu, J., Cheng, M., Liao, X., and Peng, S. (2018) Review of CRISPR/Cas9 sgRNA design tools, Interdiscip. Sci. Computational Life Sci., 10, 455-465.

    Article  CAS  Google Scholar 

  124. Kuivanen, J., Arvas, M., and Richard, P. (2017) Clustered genes encoding 2-ketol-gulonate reductase and l-idonate 5-dehydrogenase in the novel fungal d-glucuronic acid pathway, Front. Microbiol., 8, 225, https://doi.org/10.3389/fmicb.2017.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li, J., Zhang, Y., Zhang, Y., Yu, P. L., Pan, H., and Rollins, J. A. (2018) Introduction of large sequence inserts by CRISPR-Cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum, MBio, 9, e00567-e00518, https://doi.org/10.1128/mBio.00567-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miao, J., Li, X., Lin, D., Liu, X., and Tyler, B. M. (2018) Oxysterol-binding protein-related protein 2 is not essential for Phytophthora sojae based on CRISPR/Cas9 deletions, Environ. Microbiol. Rep., 10, 293-298, https://doi.org/10.1111/1758-2229.12638.

    Article  CAS  PubMed  Google Scholar 

  127. Rantasalo, A., Vitikainen, M., Paasikallio, T., Jäntti, J., Landowski, C. P., and Mojzita, D. (2019) Novel genetic tools that enable highly pure protein production in Trichoderma reesei, Sci. Rep., 9, 5032, https://doi.org/10.1038/s41598-019-41573-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kuivanen, J., Korja, V., Holmström, S., and Richard, P. (2019) Development of microtiter plate scale CRISPR/Cas9 transformation method for Aspergillus niger based on in vitro assembled ribonucleoprotein complexes, Fungal Biol. Biotechnol., 6, 3, https://doi.org/10.1186/s40694-019-0066-9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dong, L., Lin, X., Yu, D., Huang, L., Wang, B., and Pan, L. (2020) High-level expression of highly active and thermostable trehalase from Myceliophthora thermophila in Aspergillus niger by using the CRISPR/Cas9 tool and its application in ethanol fermentation, J. Industr. Microbiol. Biotechnol., 47, 133-144, https://doi.org/10.1007/s10295-019-02252-9.

    Article  CAS  Google Scholar 

  130. Manglekar, R. R., and Geng, A. (2020) CRISPR-Cas9-mediated seb1 disruption in Talaromyces pinophilus EMU for its enhanced cellulase production, Enzyme Microb. Technol., 140, 109646, https://doi.org/10.1016/j.enzmictec.2020.109646.

    Article  CAS  PubMed  Google Scholar 

  131. Rojas-Sánchez, U., López-Calleja, A. C., Millán-Chiu, B. E., Fernández, F., Loske, M., Gómez-Lim, M. A. (2020) Enhancing the yield of human erythropoietin in Aspergillus niger by introns and CRISPR-Cas9, Protein Express. Purif., 168, 105570, https://doi.org/10.1016/j.pep.2020.105570.

    Article  CAS  Google Scholar 

  132. Gardiner, D. M., and Kazan, K. (2018) Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum, Fungal Biol., 122, 131-137, https://doi.org/10.1016/j.funbio.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  133. Liu, R., Chen, L., Jiang, Y., Zou, G., and Zhou, Z. (2017) A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei, Biotechnol. Biofuels, 10, 194.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Katayama, T., Nakamura, H., Zhang, Y., Pascal, A., Fujii, W., and Maruyama, J. I. (2019) Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae, Appl. Environ. Microbiol., 85, e01896-e01818, https://doi.org/10.1128/AEM.01896-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Song, R., Zhai, Q., Sun, L., Huang, E., Zhang, Y., et al. (2019) CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective, Appl. Microbiol. Biotechnol., 103, 6919-6932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, C., Liu, J., Dua, C., Pan, Y., and Liu, G. (2020) Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum, Fungal Genet. Biol., 134, 103279, https://doi.org/10.1016/j.fgb.2019.103279.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 18-29-07070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra M. Rozhkova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkova, A.M., Kislitsin, V.Y. CRISPR/Cas Genome Editing in Filamentous Fungi. Biochemistry Moscow 86 (Suppl 1), S120–S139 (2021). https://doi.org/10.1134/S0006297921140091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921140091

Keywords

Navigation