Skip to main content
Log in

Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases – in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary cells

CAT:

catalase

GPx:

glutathione peroxidase

LDL:

low-density lipoprotein

LOOH:

lipid hydroperoxide

LPO:

lipid peroxidation

MDA:

malondialdehyde

NO :

nitric oxide

Prx:

peroxiredoxin

RCS:

reactive carbonyl species

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Lankin, V. Z., and Tikhaze, A. K. (2016) Free radical processes play an important role in the etiology and pathogenesis of atherosclerosis and diabetes, Kardiologiia, 56, 97-105.

    CAS  PubMed  Google Scholar 

  2. Forman, H. J., and Zhang, H. (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy, Nat. Rev. Drug Discov., 20, 689-709, https://doi.org/10.1038/s41573-021-00233-1.

    Article  CAS  PubMed  Google Scholar 

  3. Sies, H., Berndt, C., and Jones, D. P. (2017) Oxidative stress, Annu. Rev. Biochem., 86, 715-748, https://doi.org/10.1146/annurev-biochem-061516-045037.

    Article  CAS  PubMed  Google Scholar 

  4. Sies, H., and Jones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 21, 363-383, https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  5. Lankin, V. Z., Tikhaze, A. K., Kapel’ko, V. I., Shepel’kova, G. S., Shumaev, K. B., et al. (2007) Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress, Biochemistry (Moscow), 72, 1081-1090, https://doi.org/10.1134/s0006297907100069.

    Article  CAS  Google Scholar 

  6. Altomare, A., Baron, G., Gianazza, E., Banfi, C., Carini, M., and Aldini, G. (2021) Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives, Redox Biol., 42, 101899, https://doi.org/10.1016/j.redox.2021.101899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, M. M., Hazen, S. L., Hsu, F. F., Heinecke, J. W. (1997) Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein: a mechanism for the generation of highly reactive α-hydroxy and α,β-unsaturated aldehydes by phagocytes at sites of inflammation, J. Clin. Invest., 99, 424-432, https://doi.org/10.1172/JCI119176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talukdar, D., Chaudhuri, B. S., Ray, M., and Ray, S. (2009) Critical evaluation of toxic versus beneficial effects of methylglyoxal, Biochemistry (Moscow), 74, 1059-1069, https://doi.org/10.1134/s0006297909100010.

    Article  CAS  Google Scholar 

  9. Król, M., and Kepinska, M. (2020) Human nitric oxide synthase − its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases, Int. J. Mol. Sci., 22, 56, https://doi.org/10.3390/ijms22010056.

    Article  CAS  PubMed Central  Google Scholar 

  10. Augusto, O., Bonini, M. G., Amanso, A. M., Linares, E., Santos, C. C. X., and De Menezes, S. L. (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology, Free Radic. Biol. Med., 32, 841-859, https://doi.org/10.1016/s0891-5849(02)00786-4.

    Article  CAS  PubMed  Google Scholar 

  11. Aicardo, A., Martinez, D. M., Campolo, N., Bartesaghi, S., and Radi, R. (2016) Biochemistry of nitric oxide and peroxynitrite: sources, targets and biological implications, Biochem. Oxid. Stress, 49-77, https://doi.org/10.1007/978-3-319-45865-6_5.

  12. Gupta, D., Harish, B., Kissner, R., and Koppenol, W. H. (2009) Peroxynitrate is formed rapidly during decomposition of peroxynitrite at neutral pH, Dalt. Trans., 29, 5730-5736, https://doi.org/10.1039/b905535e.

    Article  CAS  Google Scholar 

  13. Phaniendra, A., Jestadi, D. B., and Periyasamy, L. (2015) Free radicals: properties, sources, targets, and their implication in various diseases, Ind. J. Clin. Biochem., 30, 11-26, https://doi.org/10.1007/s12291-014-0446-0.

    Article  CAS  Google Scholar 

  14. Xue, Q., Yan, Y., Zhang, R., and Xiong, H. (2018) Regulation of iNOS on immune cells and its role in diseases, Int. J. Mol. Sci., 19, 3805, https://doi.org/10.3390/ijms19123805.

    Article  CAS  PubMed Central  Google Scholar 

  15. Radi, R. (2013) Peroxynitrite, a stealthy biological oxidant, J. Biol. Chem., 288, 26464-26472, https://doi.org/10.1074/jbc.R113.472936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yarmonenko, S. P., and Vaison, A. A. (2004) Radiobiology of Humans and Animals, Vysshaya shkola, Moscow.

  17. Mu, H., Sun, J., Li, L., Yin, J., Hu, N., et al. (2018) Ionizing radiation exposure: hazards, prevention, and biomarker screening, Environ. Sci. Pollut. Res. Int., 25, 15294-15306, https://doi.org/10.1007/s11356-018-2097-9.

    Article  PubMed  Google Scholar 

  18. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O. (1954) Oxygen poisoning and X-irradiation: a mechanism in common, Science, 119, 623-626, https://doi.org/10.1126/science.119.3097.623.

    Article  CAS  PubMed  Google Scholar 

  19. Bernheim, F. (1963) Biochemical implications of pro-oxidants and antioxidants, Radiat. Res., Suppl 3, 17-32.

    CAS  PubMed  Google Scholar 

  20. Ward, J. F. (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability, Prog. Nucleic Acid Res. Mol. Biol., 35, 95-125, https://doi.org/10.1016/s0079-6603(08)60611-x.

    Article  CAS  PubMed  Google Scholar 

  21. Dong, S., Lyu, X., Yuan, S., Wang, S., Li, W., et al. (2020) Oxidative stress: a critical hint in ionizing radiation induced pyroptosis, Radiat. Med. Prot., 1, 179-185, https://doi.org/10.1016/j.radmp.2020.10.001.

    Article  Google Scholar 

  22. Sharapov, M. G., Novoselov, V. I., and Gudkov, S. V. (2019) Radioprotective role of peroxiredoxin 6, Antioxidants (Basel), 8, 15, https://doi.org/10.3390/antiox8010015.

    Article  CAS  Google Scholar 

  23. Vasin, M. V., and Ushakov, I. B. (2020) Radiomodulators as agents of biological protection against oxidative stress under the influence of ionizing radiation, Biol. Bull. Rev., 10, 251-265, https://doi.org/10.1134/S2079086420040106.

    Article  Google Scholar 

  24. Legeza, V. I., Grebenyuk, A. N., and Drachev, I. S. (2019) Radiomitigators: classification, pharmacological properties, and application prospects, Biol. Bull., 46, 1625-1632, https://doi.org/10.1134/S1062359019120045.

    Article  Google Scholar 

  25. Gudkov, S. V., Popova, N. R., and Bruskov, V. I. (2015) Radioprotective substances: history, trends and prospects, Biophysics, 60, 659-667, https://doi.org/10.1134/S0006350915040120.

    Article  CAS  Google Scholar 

  26. Sun, J., Chen, Y., Li, M., and Ge, Z. (1998) Role of antioxidant enzymes on ionizing radiation resistance, Free Radic. Biol. Med., 24, 586-593, https://doi.org/10.1016/s0891-5849(97)00291-8.

    Article  CAS  PubMed  Google Scholar 

  27. Diamond, A. M., Murray, J. L., Dale, P., Tritz, R., Sandstrom, P. A., and Grdina, D. J. (1995) Effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells, Radiat. Oncol. Invest., 3, 383-386.

    Article  CAS  Google Scholar 

  28. Verma, P., Kunwar, A., Arai, K., Iwaoka, M., and Priyadarsini, K. I. (2018) Mechanism of radioprotection by dihydroxy-1-selenolane (DHS): effect of fatty acid conjugation and role of glutathione peroxidase (GPx), Biochimie, 144, 122-133, https://doi.org/10.1016/j.biochi.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  29. Mansur, D. B., Kataoka, Y., Grdina, D. J., Diamond, A. M. (2001) Radiosensitivity of mammalian cell lines engineered to overexpress cytosolic glutathione peroxidase, Radiat. Res., 155, 536-542, https://doi.org/10.1667/0033-7587(2001)155[0536:romcle]2.0.co;2.

    Article  CAS  PubMed  Google Scholar 

  30. Stevens, G. N., Joiner, M. C., Joiner, B., Johns, H., and Stratford, M. R. (1989) Role of glutathione peroxidase in the radiation response of mouse kidney, Int. J. Radiat. Oncol. Biol. Phys., 16, 1213-1217, https://doi.org/10.1016/0360-3016(89)90286-1.

    Article  CAS  PubMed  Google Scholar 

  31. Toppo, S., Flohé, L., Ursini, F., Vanin, S., and Maiorino, M. (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme, Biochim. Biophys. Acta Gen. Subj., 1790, 1486-1500, https://doi.org/10.1016/j.bbagen.2009.04.007.

    Article  CAS  Google Scholar 

  32. Jiao, Y., Wang, Y., Guo, S., and Wang, G. (2017) Glutathione peroxidases as oncotargets, Oncotarget, 8, 80093-80102, https://doi.org/10.18632/oncotarget.20278.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, H. C., Kim, D. W., Jung, K. Y., Park, I. C., Park, M. J., et al. (2004) Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line, Int. J. Mol. Med., 13, 883-887.

    CAS  PubMed  Google Scholar 

  34. Zhang, S., Wang, W., Gu, Q., Xue, J., Cao, H., et al. (2014) Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation, Free Radic. Biol. Med., 69, 96-107, https://doi.org/10.1016/j.freeradbiomed.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, K., Park, J. S., Kim, Y. J., Soo Lee, Y., Sook Hwang, T., et al. (2002) Differential expression of Prx I and II in mouse testis and their up-regulation by radiation, Biochem. Biophys. Res. Commun., 296, 337-342, https://doi.org/10.1016/s0006-291x(02)00801-x.

    Article  CAS  PubMed  Google Scholar 

  36. Miura, Y., Kano, M., Yamada, M., Nishine, T., Urano, S., et al. (2007) Proteomic study on X-irradiation-responsive proteins and ageing: search for responsible proteins for radiation adaptive response, J. Biochem., 142, 145-155, https://doi.org/10.1093/jb/mvm118.

    Article  CAS  PubMed  Google Scholar 

  37. An, J. H., and Seong, J. S. (2006) Proteomics analysis of apoptosis-regulating proteins in tissues with different radiosensitivity, J. Radiat. Res., 47, 147-155, https://doi.org/10.1269/jrr.47.147.

    Article  CAS  PubMed  Google Scholar 

  38. Cerda, M.B., Lloyd, R., Batalla, M., Giannoni, F., Casal, M., and Policastro, L. (2017) Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin, Cancer Lett., 388, 312-319, https://doi.org/10.1016/j.canlet.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  39. Diaz, A.J.G., Tamae, D., Yen, Y., Li, J., and Wang, T. (2013) Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II, Breast Cancer Targets Ther., 5, 87-101, https://doi.org/10.2147/BCTT.S51378.

    Article  CAS  Google Scholar 

  40. Sharapov, M. G., and Novoselov, V. I. (2019) Catalytic and signaling role of peroxiredoxins in carcinogenesis, Biochemistry (Moscow), 84, 79-100, https://doi.org/10.1134/S0006297919020019.

    Article  CAS  Google Scholar 

  41. Chen, M.-F., Keng, P. C., Shau, H., Wu, C.-T., Hu, Y.-C., et al. (2006) Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression, Int. J. Radiat. Oncol. Biol. Phys., 64, 581-591, https://doi.org/10.1016/j.ijrobp.2005.10.012.

    Article  CAS  PubMed  Google Scholar 

  42. Li, G., Xie, B., Li, X., Chen, Y., Xu, Y., et al. (2015) Downregulation of peroxiredoxin-1 by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenografts, Oncol. Rep., 33, 1427-1433, https://doi.org/10.3892/or.2015.3732.

    Article  CAS  PubMed  Google Scholar 

  43. Kwee, J. K. (2014) A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde, Biomed Res. Int., 2014, 209845, https://doi.org/10.1155/2014/209845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song, I.-S., Kim, H.-K., Jeong, S.-H., Lee, S.-R., Kim, N., et al. (2011) Mitochondrial peroxiredoxin III is a potential target for cancer therapy, Int. J. Mol. Sci., 12, 7163-7185, https://doi.org/10.3390/ijms12107163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, W. C., McBride, W. H., Iwamoto, K. S., Barber, C. L., Wang, C. C., et al. (2002) Induction of radioprotective peroxiredoxin-I by ionizing irradiation, J. Neurosci. Res., 70, 794-798, https://doi.org/10.1002/jnr.10435.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, B., Wang, Y., and Su, Y. (2009) Peroxiredoxins, a novel target in cancer radiotherapy, Cancer Lett., 286, 154-160, https://doi.org/10.1016/j.canlet.2009.04.043.

    Article  CAS  PubMed  Google Scholar 

  47. Jia, W., Chen, P., and Cheng, Y. (2019) PRDX4 and its roles in various cancers, Technol. Cancer Res. Treat., 18, 1533033819864313, https://doi.org/10.1177/1533033819864313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ho, J. N., Lee, S. B., Lee, S. S., Yoon, S. H., Kang, G. Y., et al. (2010) Phospholipase A2 activity of peroxiredoxin 6 promotes invasion and metastasis of lung cancer cells, Mol. Cancer Ther., 9, 825-832, https://doi.org/10.1158/1535-7163.MCT-09-0904.

    Article  CAS  PubMed  Google Scholar 

  49. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., and Novoselova, E. G. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6, Arch. Biochem. Biophys., 702, 108830, https://doi.org/10.1016/j.abb.2021.108830.

    Article  CAS  PubMed  Google Scholar 

  50. Lankin, V. Z., and Tikhaze, A. K. (2016) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, https://doi.org/10.2174/1874609809666160926142640.

    Article  CAS  Google Scholar 

  51. Lankin, V. Z., Tikhaze, A. K. (2003) Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects, IOS Press, NATO Science Series, Amsterdam.

  52. Mushenkova, N. V., Bezsonov, E. E., Orekhova, V. A., Popkova, T. V., Starodubova, A. V., and Orekhov, A. N. (2021) Recognition of oxidized lipids by macrophages and its role in atherosclerosis development, Biomedicines, 9, 915, https://doi.org/10.3390/biomedicines9080915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tribble, D. L., Barcellos-Hoff, M. H., Chu, B. M., and Gong, E. L. (1999) Ionizing radiation accelerates aortic lesion formation in fat-fed mice via SOD-inhibitable processes, Arterioscler. Thromb. Vasc. Biol., 19, 1387-1392, https://doi.org/10.1161/01.atv.19.6.1387.

    Article  CAS  PubMed  Google Scholar 

  54. Lankin, V. Z., Tikhaze, A. K., and Kumskova, E. M. (2012) Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein, Mol. Cell. Biochem., 365, 93-98, https://doi.org/10.1007/s11010-012-1247-5.

    Article  CAS  PubMed  Google Scholar 

  55. Chistiakov, D. A., Orekhov, A. N., and Bobryshev, Y. V. (2016) LOX-1-mediated effects on vascular cells in atherosclerosis, Cell. Physiol. Biochem., 38, 1851-1859, https://doi.org/10.1159/000443123.

    Article  CAS  PubMed  Google Scholar 

  56. Shumaev, K. B., Ruuge, E. K., Dmitrovsky, A. A., Bykhovsky, V. Ya., and Kukharchuk, V. V. (1997) Effect of lipid peroxidation products and antioxidants on the formation of probucol radical in low density lipoproteins, Biochemistry (Moscow), 62, 657-660.

    CAS  Google Scholar 

  57. Lankin, V. Z., Tikhaze, A. K., and Osis, Y. G. (2002) Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes, Biochemistry (Moscow), 67, 566-574, https://doi.org/10.1023/a:1015502429453.

    Article  CAS  Google Scholar 

  58. Lankin, V. Z., Tikhaze, A. K., Kukharchuk, V. V., Konovalova, G. G., Pisarenko, O. I., et al. (2003) Antioxidants decreases the intensification of low density lipoprotein in vivo peroxidation during therapy with statins, Mol. Cell. Biochem., 249, 129-140.

    Article  CAS  Google Scholar 

  59. Lankin, V. Z., Tikhaze, A. K., Konovalova, G. G., Odinokova, O. A., Doroshchuk, N. A., and Chazova, I. E. (2018) Oxidative and carbonyl stress as a factors of the modification of proteins and DNA destruction in diabetes, Ter. Arkh., 90, 46-50, https://doi.org/10.26442/terarkh201890104-50.

    Article  CAS  PubMed  Google Scholar 

  60. Sena, C. M., Pereira, A. M., and Seiça, R. (2013) Endothelial dysfunction – a major mediator of diabetic vascular disease, Biochim. Biophys. Acta Mol. Basis Dis., 1832, 2216-2231, https://doi.org/10.1016/j.bbadis.2013.08.006.

    Article  CAS  Google Scholar 

  61. Lankin, V. Z., Shumaev, K. B., Tikhaze, A. K., and Kurganov, B. I. (2017) Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase, Dokl. Biochem. Biophys., 475, 287-290, https://doi.org/10.1134/S1607672917040123.

    Article  CAS  PubMed  Google Scholar 

  62. Sharapov, M. G., Goncharov, R. G., Gordeeva, A. E., Novoselov, V. I., Antonova, O. A., et al. (2016) Enzymatic antioxidant system of endotheliocytes, Dokl. Biochem. Biophys., 471, 410-412, https://doi.org/10.1134/S1607672916060090.

    Article  CAS  PubMed  Google Scholar 

  63. Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., et al. (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis, Circ. Res., 103, 598-605, https://doi.org/10.1161/CIRCRESAHA.108.174870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ihida-Stansbury, K., Ames, J., Chokshi, M., Aiad, N., Sanyal, S., et al. (2015) Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs, Pulm. Circ., 5, 382-397, https://doi.org/10.1086/681272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, J.-G., Yoo, J.-Y., Jeong, S.-J., Choi, J.-H., Lee, M.-R., et al. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice, Circ. Res., 109, 739-749, https://doi.org/10.1161/CIRCRESAHA.111.245530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong, S. J., Park, J. G., and Oh, G. T. (2021) Peroxiredoxins as potential targets for cardiovascular disease, Antioxidants (Basel), 10, 1244, https://doi.org/10.3390/antiox10081244.

    Article  CAS  Google Scholar 

  67. Wang, X., Phelan, S. A., Forsman-Semb, K., Taylor, E. F., Petros, C., et al. (2003) Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress, J. Biol. Chem., 278, 25179-25190, https://doi.org/10.1074/jbc.M302706200.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., et al. (2004) Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis, Atherosclerosis, 177, 61-70, https://doi.org/10.1016/j.atherosclerosis.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  69. Burillo, E., Jorge, I., Martínez-López, D., Camafeita, E., Blanco-Colio, L. M., et al. (2016) Quantitative HDL proteomics identifies peroxiredoxin-6 as a biomarker of human abdominal aortic aneurysmm, Sci. Rep., 6, 38477, https://doi.org/10.1038/srep38477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lankin, V. Z., Sharapov, M. G., Goncharov, R. G., Tikhaze, A. K., and Novoselov, V. I. (2019) Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins, Dokl. Biochem. Biophys., 485, 132-134, https://doi.org/10.1134/S1607672919020157.

    Article  CAS  PubMed  Google Scholar 

  71. Maruhashi, T., and Higashi, Y. (2021) Pathophysiological Association between diabetes mellitus and endothelial dysfunction, Antioxidants (Basel), 10, 1306, https://doi.org/10.3390/antiox10081306.

    Article  CAS  Google Scholar 

  72. Vladimirov, Y. A., and Proskurnina, E. V. (2009) Free radicals and cell chemiluminescence, Biochemistry (Moscow), 74, 1545-1566, https://doi.org/10.1134/s0006297909130082.

    Article  CAS  Google Scholar 

  73. Lankin, V. Z., Antonovsky, V. L., and Tikhaze, A. K. (2004) Regulation of free radical lipoperoxidation and organic peroxides metabolism during normal station and pathologies, in Peroxides at the Beginning of the Third Millennium, Nova Sci. Publ., p. 85-111.

  74. Lankin, V., Konovalova, G., Tikhaze, A., Shumaev, K., Kumskova, E., and Viigimaa, M. (2014) The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes, Mol. Cell. Biochem., 395, 241252, https://doi.org/10.1007/s11010-014-2131-2.

    Article  CAS  Google Scholar 

  75. Lankin, V. Z., Shadyro, O. I., Shumaev, K. B., Shumaev, K. B., Tikhaze, A. K., and Sladkova, A. A. (2019) Non-enzymatic methylglyoxal formation from glucose metabolites and generation of superoxide anion radical during methylglyoxal-dependent cross-links reaction, J. Antioxid. Act., 1, 33-45, https://doi.org/10.14302/issn.2471-2140.jaa-19-2997.

    Article  Google Scholar 

  76. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Belova Kumskova, E. M., et al. (2016) Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients, J. Diabetes, 8, 398-404, https://doi.org/10.1111/1753-0407.12309.

    Article  CAS  PubMed  Google Scholar 

  77. Oberley, L. W. (1988) Free radicals and diabetes, Free Radic. Biol. Med., 5, 113-124, https://doi.org/10.1016/0891-5849(88)90036-6.

    Article  CAS  PubMed  Google Scholar 

  78. Huang, J. Q., Zhou, J. C., Wu, Y. Y., Ren, F. Z., and Lei, X. G. (2018) Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases, Free Radic. Biol. Med., 127, 108-115, https://doi.org/10.1016/j.freeradbiomed.2018.05.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsushima, S., Kinugawa, S., Ide, T., Matsusaka, H., Inoue, N., et al. (2006) Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart, Am. J. Physiol. Hear. Circ. Physiol., 291, 2237-2245, https://doi.org/10.1152/ajpheart.00427.2006.

    Article  CAS  Google Scholar 

  80. Koulajian, K., Ivovic, A., Ye, K., Desai, T., Shah, A., et al. (2013) Overexpression of glutathione peroxidase 4 prevents β-cell dysfunction induced by prolonged elevation of lipids in vivo, Am. J. Physiol. Endocrinol. Metab., 305, 254-262, https://doi.org/10.1152/ajpendo.00481.2012.

    Article  CAS  Google Scholar 

  81. Stancill, J. S., Happ, J. T., Broniowska, K. A., Hogg, N., and Corbett, J. A. (2020) Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite, Am. J. Physiol. Regul. Integr. Comp. Physiol., 318, R1004-R1013, https://doi.org/10.1152/ajpregu.00011.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding, Y., Yamada, S., Wang, K. Y., Shimajiri, S., Guo, X., et al. (2010) Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic mice, Antioxidants Redox Signal., 13, 1477-1490, https://doi.org/10.1089/ars.2010.3137.

    Article  CAS  Google Scholar 

  83. Pacifici, F., Arriga, R., Sorice, G. P., Capuani, B., Scioli, M. G., et al. (2014) Peroxiredoxin 6, a novel player in the pathogenesis of diabetes, Diabetes, 63, 3210-3220, https://doi.org/10.2337/db14-0144.

    Article  CAS  PubMed  Google Scholar 

  84. Menshchikova, E. B., Lankin, V. Z., Zenkov, N. K., Bondar, I. A., Krugovykh, N. F., and Trufakin, V. A. (2006) Oxidative Stress. Pro-Oxidants and Antioxidants, Slovo, Moscow.

  85. Vasin, M. V., and Ushakov, I. B. (2019) Potential ways to increase body resistance to damaging action of ionizing radiation with radiomitigators, Biol. Bull. Rev., 9, 503-519, https://doi.org/10.1134/S2079086419060082.

    Article  Google Scholar 

  86. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Hydroperoxide-reducing enzymes in the regulation of free-radical processes, Biochemistry (Moscow), 86, 1256-1274, https://doi.org/10.1134/S0006297921100084.

    Article  CAS  Google Scholar 

  87. McCord, J. M., and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem., 244, 6049-6055, https://doi.org/10.1016/S0021-9258(18)63504-5.

    Article  CAS  PubMed  Google Scholar 

  88. Borrelli, A., Schiattarella, A., Mancini, R., Morrica, B., Cerciello, V., et al. (2009) A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells, Free Radic. Biol. Med., 46, 110-116, https://doi.org/10.1016/j.freeradbiomed.2008.

    Article  CAS  PubMed  Google Scholar 

  89. Cataldi, S., Borrelli, A., Ceccarini, M. R., Nakashidze, I., Codini, M., et al. (2019) Neutral sphingomyelinase modulation in the protective/preventive role of rMnSOD from radiation-induced damage in the brain, Int. J. Mol. Sci., 20, 5431, https://doi.org/10.3390/ijms20215431.

    Article  CAS  PubMed Central  Google Scholar 

  90. Pisani, A., Sabbatini, M., Riccio, E., Rossano, R., Andreucci, M., et al. (2014) Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury, Clin. Exp. Nephrol., 18, 424-431, https://doi.org/10.1007/s10157-013-0828-2.

    Article  CAS  PubMed  Google Scholar 

  91. Zharikov, A. A., Terekhov, O. V., and Pasov, V. V. (2013) Ultrasound-guided mini-invasive treatment of patients with late radiation injuries to lesser pelvic organs, Onkologiya. Zhurn. Im. P. A. Gertzena, 5, 26-30.

    Google Scholar 

  92. Mao, G. D., Thomas, P. D., Lopaschuk, G. D., and Poznansky, M. J. (1993) Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity, J. Biol. Chem., 268, 416-420.

    Article  CAS  Google Scholar 

  93. Maksimenko, A. V. (2016) Widening and elaboration of consecutive research into therapeutic antioxidant enzyme derivatives. Oxidative medicine and cellular longevity, Oxid. Med. Cell. Longev., 2016, 3075695, https://doi.org/10.1155/2016/3075695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Isarankura-Na-Ayudhya, C., Yainoy, S., Tantimongcolwat, T., Bülow, L., and Prachayasittikul, V. (2010) Engineering of a novel chimera of superoxide dismutase and Vitreoscilla Hemoglobin for rapid detoxification of reactive oxygen species, J. Biosci. Bioeng., 110, 633-637, https://doi.org/10.1016/j.jbiosc.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  95. Guan, T., Song, J., Wang, Y., Guo, L., Yuan, L., et al. (2017) Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities, Free Radic. Biol. Med., 110, 188-195, https://doi.org/10.1016/j.freeradbiomed.2017.06.005.

    Article  CAS  PubMed  Google Scholar 

  96. Sharapov, M. G., Novoselov, V. I., and Ravin, V. K. (2016) Construction of a fusion enzyme exhibiting superoxide dismutase and peroxidase activity, Biochemistry (Moscow), 81, 420-427, https://doi.org/10.1134/S0006297916040131.

    Article  CAS  Google Scholar 

  97. Sharapov, M. G., Gudkov, S. V., Gordeeva, A. E., Karp, O. E., Ivanov, V. E., et al. (2016) Peroxiredoxin 6 is a natural radioprotector, Dokl. Biochem. Biophys., 467, 110-112, https://doi.org/10.1134/S1607672916020095.

    Article  CAS  PubMed  Google Scholar 

  98. Sharapov, M. G., Novoselov, V. I., Fesenko, E. E., Bruskov, V. I., and Gudkov, S. V. (2017) The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals, Free Radic. Res., 51, 148-166, https://doi.org/10.1080/10715762.2017.1289377.

    Article  CAS  PubMed  Google Scholar 

  99. Sharapov, M. G., Novoselov, V. I., Samygina, V. R., Konarev, P. V., Molochkov, A. V., et al. (2020) A chimeric recombinant protein with peroxidase and superoxide dismutase activities: physico-chemical characterization and applicability to neutralize oxidative stress caused by ionizing radiation, Biochem. Eng. J., 159, 107603, https://doi.org/10.1016/j.bej.2020.107603.

    Article  CAS  Google Scholar 

  100. Sharapov, M. G., and Gudkov, S. V. (2021) Peroxiredoxin 1 – Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation, Arch. Biochem. Biophys., 697, 108671, https://doi.org/10.1016/j.abb.2020.108671.

    Article  CAS  PubMed  Google Scholar 

  101. Sharapov, M. G., Novoselov, V. I., Penkov, N. V., Fesenko, E. E., Vedunova, M. V., et al. (2019) Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation, Free Radic. Biol. Med., 134, 76-86, https://doi.org/10.1016/j.freeradbiomed.2018.12.032.

    Article  CAS  PubMed  Google Scholar 

  102. Hellweg, C. E., Spitta, L. F., Henschenmacher, B., Diegeler, S., and Baumstark-Khan, C. (2016) Transcription factors in the cellular response to charged particle exposure, Front. Oncol., 6, 61, https://doi.org/10.3389/fonc.2016.00061.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ji, Z., He, L., Regev, A., and Struhl, K. (2019) Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers, Proc. Natl. Acad. Sci. USA, 116, 9453-9462, https://doi.org/10.1073/pnas.1821068116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Novoselova, E. G., Glushkova, O. V., Lunin, S. M., Khrenov, M. O., Parfenyuk, S. B., et al. (2020) Peroxiredoxin 6 attenuates alloxan-induced type 1 diabetes mellitus in mice and cytokine-induced cytotoxicity in RIN-m5F Beta cells, J. Diabetes Res., 2020, 7523892, https://doi.org/10.1155/2020/7523892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Novoselova, E. G., Glushkova, O. V., Parfenuyk, S. B., Khrenov, M. O., Lunin, S. M., et al. (2019) Protective effect of peroxiredoxin 6 against toxic effects of glucose and cytokines in pancreatic RIN-m5F β-cells, Biochemistry (Moscow), 84, 637-643, https://doi.org/10.1134/S0006297919060063.

    Article  CAS  Google Scholar 

  106. Karaduleva, E. V., Mubarakshina, E. K., Sharapov, M. G., Volkova, A. E., Pimenov, O. Y., et al. (2016) Cardioprotective effect of modified peroxiredoxins in retrograde perfusion of isolated rat heart under conditions of oxidative stress, Bull. Exp. Biol. Med., 160, 639-642, https://doi.org/10.1007/s10517-016-3237-1.

    Article  CAS  PubMed  Google Scholar 

  107. Grudinin, N. V., Bogdanov, V. K., Sharapov, M. G., Bunenkov, N. S., Mozheiko, N. P., et al. (2020) Use of peroxiredoxin for preconditioning of heterotopic heart transplantation in a rat, Vestn. Transplantologii i Iskusstv. Organov, 22, 132-136, https://doi.org/10.15825/1995-1191-2020-2-158-164.

    Article  Google Scholar 

  108. Sharapov, M. G., Gordeeva, A. E., Goncharov, R. G., Tikhonova, I. V., Ravin, V. K., et al. (2017) The effect of exogenous peroxiredoxin 6 on the state of mesenteric vessels and the small intestine in ischemia–reperfusion injury, Biophysics, 62, 998-1008, https://doi.org/10.1134/S0006350917060239.

    Article  CAS  Google Scholar 

  109. Gordeeva, A. E., Temnov, A. A., Charnagalov, A. A., Sharapov, M. G., Fesenko, E. E., and Novoselov, V. I. (2015) Protective effect of peroxiredoxin 6 in ischemia/reperfusion-induced damage of small intestine, Dig. Dis. Sci., 60, 3610-3619, https://doi.org/10.1007/s10620-015-3809-3.

    Article  CAS  PubMed  Google Scholar 

  110. Goncharov, R. G., Rogov, K. A., Temnov, A. A., Novoselov, V. I., and Sharapov, M. G. (2019) Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney, Cell Tissue Res., 378, 319-332, https://doi.org/10.1007/s00441-019-03073-z.

    Article  CAS  PubMed  Google Scholar 

  111. Sharapov, M. G., Goncharov, R. G., Filkov, G. I., Trofimenko, A. V., Boyarintsev, V. V., and Novoselov, V. I. (2020) Comparative study of protective action of exogenous 2-cys peroxiredoxins (Prx1 and Prx2) under renal ischemia-reperfusion injury, Antioxidants (Basel), 9, 680, https://doi.org/10.3390/antiox9080680.

    Article  CAS  Google Scholar 

  112. Li, Z., Wang, F., Roy, S., Sen, C. K., and Guan, J. (2009) Injectable, highly flexible, and thermosensitive hydrogels capable of delivering superoxide dismutase, Biomacromolecules, 10, 3306-3316, https://doi.org/10.1021/bm900900e.

    Article  CAS  PubMed  Google Scholar 

  113. Guryev, E. L., Volodina, N. O., Shilyagina, N. Y., Gudkov, S. V., Balalaeva, I. V., et al. (2018) Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer, Proc. Natl. Acad. Sci. USA, 115, 9690-9695, https://doi.org/10.1073/pnas.1809258115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gil, D., Rodriguez, J., Ward, B., Vertegel, A., Ivanov, V., and Reukov, V. (2017) Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria, Bioengineering (Basel), 4, 18, https://doi.org/10.3390/bioengineering4010018.

    Article  CAS  PubMed Central  Google Scholar 

  115. Simone, E. A., Dziubla, T. D., Arguiri, E., Vardon, V., Shuvaev, V. V., et al. (2009) Loading PEG-catalase into filamentous and spherical polymer nanocarriers, Pharm. Res., 26, 250-260, https://doi.org/10.1007/s11095-008-9744-7.

    Article  CAS  PubMed  Google Scholar 

  116. Lacramioara, L., Diaconu, A., Butnaru, M., and Verestiuc, L. (2016) Biocompatible SPIONs with superoxid dismutase/catalase immobilized for cardiovascular applications, IFMBE Proc., 55, 323-326, https://doi.org/10.1007/978-981-287-736-9_78.

    Article  Google Scholar 

  117. Novoselov, V. I., Ravin, V. K., Sharapov, M. G., Sofin, A. D., Kukushkin, N. I., and Fesenko, E. E. (2011) Modified peroxiredoxins as prototypes of drugs with powerful antioxidant action, Biophysics, 56, 836-842, https://doi.org/10.1134/S0006350911050137.

    Article  Google Scholar 

  118. Chhunchha, B., Kubo, E., Kompella, U. B., and Singh, D. P. (2021) Engineered sumoylation-deficient prdx6 mutant protein-loaded nanoparticles provide increased cellular defense and prevent lens opacity, Antioxidants (Basel), 10, 1245, https://doi.org/10.3390/antiox10081245.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 19-04-00080 and 20-34-70037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mars G. Sharapov.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original online version of this article was revised: The name of the first author was spelled incorrectly. The erroneous variant Mars G. Shaparov was corrected to Mars G. Sharapov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Gudkov, S.V., Lankin, V.Z. et al. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. Biochemistry Moscow 86, 1418–1433 (2021). https://doi.org/10.1134/S0006297921110067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110067

Keywords

Navigation