Skip to main content
Log in

Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review is devoted to tropomyosin (Tpm)–actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies–severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Tpm:

tropomyosin

References

  1. Gunning, P., O’Neill, G., and Hardeman, E. (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space, Physiol. Rev., 88, 1–35.

    Article  CAS  PubMed  Google Scholar 

  2. Gunning, P., Gordon, M., Wade, R., Gahlmann, R., Lin, C. S., and Hardeman, E. (1990) Differential control of tropomyosin mRNA levels during myogenesis suggests the existence of an isoform competition-autoregulatory compensation control mechanism, Dev. Biol., 138, 443–453.

    Article  CAS  PubMed  Google Scholar 

  3. Weinberger, R. P., Henke, R. C., Tolhurst, O., Jeffrey, P. L., and Gunning, P. (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation, J. Cell Biol., 120, 205–215.

    Article  CAS  PubMed  Google Scholar 

  4. Grieshaber, N. A., Ko, C., Grieshaber, S. S., Ji, I., and Ji, T. H. (2003) Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I beta-tubulin, tropomyosin-4, and kinesin heavy chain, Endocrinology, 144, 29–39.

    Article  CAS  PubMed  Google Scholar 

  5. Schevzov, G., Vrhovski, B., Bryce, N. S., Elmir, S., Qiu, M. R., O’Neill, G., N. Yang, N., Verrills, N. M., Kavallaris, M., and Gunning, P. W. (2005) Tissue-specific tropomyosin isoform composition, J. Histochem. Cytochem., 53, 557–570.

    Article  CAS  PubMed  Google Scholar 

  6. Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., Coombes, J. D., Lucas, C. A., Stehn, J. R., Musgrove, E. A., Cretu, A., Assoian, R., Fath, T., Hanoch, T., Seger, R., Pleines, I., Kile, B. T., Hardeman, E. C., and Gunning, P. W. (2015) Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments, Mol. Biol. Cell, 26, 2475–2490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pelham, R. J., Jr., Lin, J. J., and Wang, Y. L. (1996) A high molecular mass non-muscle tropomyosin isoform stimulates retrograde organelle transport, J. Cell Sci., 109, 981–989.

    CAS  PubMed  Google Scholar 

  8. Pruyne, D. W., Schott, D. H., and Bretscher, A. (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast, J. Cell Biol., 143, 1931–1945.

    Article  CAS  PubMed  Google Scholar 

  9. Dalby-Payne, J. R., O’Loughlin, E. V., and Gunning, P. (2003) Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface, Mol. Biol. Cell, 14, 4365–4375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thoms, J. A., Loch, H. M., Bamburg, J. R., Gunning, P. W., and Weinberger, R. P. (2008) A tropomyosin 1 induced defect in cytokinesis can be rescued by elevated expression of cofilin, Cell Motil. Cytoskeleton, 65, 979–990.

    Article  CAS  PubMed  Google Scholar 

  11. McMichael, B. K., and Lee, B. S. (2008) Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts, Exp. Cell Res., 314, 564–573.

    Article  CAS  PubMed  Google Scholar 

  12. Bach, C. T., Creed, S., Zhong, J., Mahmassani, M., Schevzov, G., Stehn, J., Cowell, L. N., Naumanen, P., Lappalainen, P., Gunning, P. W., and O’Neill, G. M. (2009) Tropomyosin isoform expression regulates the transition of adhesions to determine cell speed and direction, Mol. Cell. Biol., 29, 1506–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Neill, G. M. (2009) The coordination between actin filaments and adhesion in mesenchymal migration, Cell Adh. Migr., 3, 355–357.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caldwell, B. J., Lucas, C., Kee, A. J., Gaus, K., Gunning, P. W., Hardeman, E. C., Yap, A. S., and Gomez, G. A. (2014) Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens, Cytoskeleton, 71, 663–676.

    Article  CAS  PubMed  Google Scholar 

  15. McKillop, D. F., and Geeves, M. A. (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J., 65, 693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Khayat, H. A., Yagi, N., and Squire, J. M. (1995) Structural changes in actin–tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data, J. Mol. Biol., 252, 611–632.

    Article  CAS  PubMed  Google Scholar 

  17. Craig, R., and Lehman, W. (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments, J. Mol. Biol., 311, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  18. Bacchiocchi, C., and Lehrer, S. S. (2002) Ca2+-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET, Biophys. J., 82, 1524–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunning, P. W., Hardeman, E. C., Lappalainen, P., and Mulvihill, D. P. (2015) Tropomyosin–master regulator of actin filament function in the cytoskeleton, J. Cell Sci., 128, 2965–2974.

    Article  CAS  PubMed  Google Scholar 

  20. Khaitlina, S. Y. (2015) Tropomyosin as a regulator of actin dynamics, Int. Rev. Cell Mol. Biol., 318, 255–291.

    Article  CAS  PubMed  Google Scholar 

  21. Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosin-mediated regulation of cytoplasmic myosins, Traffic, 17, 872–877.

    Article  CAS  PubMed  Google Scholar 

  22. Broschat, K. O. (1990) Tropomyosin prevents depolymerization of actin filaments from the pointed end, J. Biol. Chem., 265, 21323–21329.

    CAS  PubMed  Google Scholar 

  23. Weigt, C., Schoepper, B., and Wegner, A. (1990) Tropomyosin–troponin complex stabilizes the pointed ends of actin filaments against polymerization and depolymerization, FEBS Lett., 260, 266–268.

    Article  CAS  PubMed  Google Scholar 

  24. Kojima, H., Ishijima, A., and Yanagida, T. (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation, Proc. Natl. Acad. Sci. USA, 91, 12962–12966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldmann, W. H. (2000) Binding of tropomyosin–troponin to actin increases filament bending stiffness, Biochem. Biophys. Res. Commun., 276, 1225–1228.

    Article  CAS  PubMed  Google Scholar 

  26. Watson, M. H., Kuhn, A. E., Novy, R. E., Lin, J. J., and Mak, A. S. (1990) Caldesmon-binding sites on tropomyosin, J. Biol. Chem., 265, 18860–18866.

    CAS  PubMed  Google Scholar 

  27. Maciver, S. K., Ternent, D., and McLaughlin, P. J. (2000) Domain 2 of gelsolin binds directly to tropomyosin, FEBS Lett., 473, 71–75.

    Article  CAS  PubMed  Google Scholar 

  28. Kostyukova, A. S., Choy, A., and Rapp, B. A. (2006) Tropomodulin binds two tropomyosins: a novel model for actin filament capping, Biochemistry, 45, 12068–12075.

    Article  CAS  PubMed  Google Scholar 

  29. Wawro, B., Greenfield, N. J., Wear, M. A., Cooper, J. A., Higgs, H. N., and Hitchcock-DeGregori, S. E. (2007) Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament, Biochemistry, 46, 8146–8155.

    Article  CAS  PubMed  Google Scholar 

  30. Blanchoin, L., Pollard, T. D., and Hitchcock-DeGregori, S. E. (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin, Curr. Biol., 11, 1300–1304.

    Article  CAS  PubMed  Google Scholar 

  31. Ono, S., and Ono, K. (2002) Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics, J. Cell Biol., 156, 1065–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lees-Miller, J. P., and Helfman, D. M. (1991) The molecular basis for tropomyosin isoform diversity, Bioessays, 13, 429–437.

    Article  CAS  PubMed  Google Scholar 

  33. Geeves, M. A., Hitchcock-DeGregori, S. E., and Gunning, P. W. (2015) A systematic nomenclature for mammalian tropomyosin isoforms, J. Muscle Res. Cell Motil., 36, 147–153.

    Article  CAS  PubMed  Google Scholar 

  34. Nevzorov, I. A., and Levitsky, D. I. (2011) Tropomyosin: double helix from the protein world, Biochemistry (Moscow), 76, 1507–1527.

    Article  CAS  Google Scholar 

  35. Okumura, N., Hashida-Okumura, A., Kita, K., Matsubae, M., Matsubara, T., Takao, T., and Nagai, K. (2005) Proteomic analysis of slow- and fast-twitch skeletal muscles, Proteomics, 5, 2896–2906.

    Article  CAS  PubMed  Google Scholar 

  36. Oe, M., Ohnishi-Kameyama, M., Nakajima, I., Muroya, S., and Chikuni, K. (2007) Muscle type specific expression of tropomyosin isoforms in bovine skeletal muscles, Meat Sci., 75, 558–563.

    Article  CAS  PubMed  Google Scholar 

  37. Janco, M., Suphamungmee, W., Li, X., Lehman, W., Lehrer, S. S., and Geeves, M. A. (2013) Polymorphism in tropomyosin structure and function, J. Muscle Res. Cell Motil., 34, 177–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muthuchamy, M., Pajak, L., Howles, P., Doetschman, T., and Wieczorek, D. F. (1993) Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos, Mol. Cell. Biol., 13, 3311–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muthuchamy, M., Grupp, I. L., Grupp, G., O’Toole, B. A., Kier, A. B., Boivin, G. P., Neumann, J., and Wieczorek, D. F. (1995) Molecular and physiological effects of overex-pressing striated muscle beta-tropomyosin in the adult murine heart, J. Biol. Chem., 270, 30593–30603.

    Article  CAS  PubMed  Google Scholar 

  40. Lehrer, S. S., and Stafford, W. F., 3rd (1991) Preferential assembly of the tropomyosin heterodimer: equilibrium studies, Biochemistry, 30, 5682–5688.

    Article  CAS  PubMed  Google Scholar 

  41. Hvidt, S., and Lehrer, S. S. (1992) Thermally induced chain exchange of frog alpha,beta-tropomyosin, Biophys. Chem., 45, 51–59.

    Article  CAS  PubMed  Google Scholar 

  42. Lehman, W., Vibert, P., Uman, P., and Craig, R. (1995) Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments, J. Mol. Biol., 251, 191–196.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, C., Craig, R., Tobacman, L., Horowitz, R., and Lehman, W. (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy, Biophys. J., 77, 985–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Behrmann, E., Muller, M., Penczek, P. A., Mannherz, H. G., Manstein, D. J., and Raunser, S. (2012) Structure of the rigor actin–tropomyosin–myosin complex, Cell, 150, 327–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson, J. M., Dong, W. J., Xing, J., and Cheung, H. C. (2004) Switching of troponin I: Ca2+ and myosin-induced activation of heart muscle, J. Mol. Biol., 340, 295–305.

    Article  CAS  PubMed  Google Scholar 

  46. Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., and Bild, D. E. (1995) Prevalence of hyper-trophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults, Circulation, 92, 785–789.

    Article  CAS  PubMed  Google Scholar 

  47. Redwood, C., and Robinson, P. (2013) Alpha-tropomyosin mutations in inherited cardiomyopathies, J. Muscle Res. Cell Motil., 34, 285–294.

    Article  CAS  PubMed  Google Scholar 

  48. Watkins, H., Ashrafian, H., and Redwood, C. (2011) Inherited cardiomyopathies, N. Engl. J. Med., 364, 1643–1656.

    Article  CAS  PubMed  Google Scholar 

  49. Bing, W., Knott, A., Redwood, C., Esposito, G., Purcell, I., Watkins, H., and Marston, S. (2000) Effect of hyper-trophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay, J. Mol. Cell. Cardiol., 32, 1489–1498.

    Article  CAS  PubMed  Google Scholar 

  50. Michele, D. E., Gomez, C. A., Hong, K. E., Westfall, M. V., and Metzger, J. M. (2002) Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by beta-blockade, Circ. Res., 91, 255–262.

    Article  CAS  PubMed  Google Scholar 

  51. Heller, M. J., Nili, M., Homsher, E., and Tobacman, L. S. (2003) Cardiomyopathic tropomyosin mutations that increase thin filament Ca2+ sensitivity and tropomyosin N-domain flexibility, J. Biol. Chem., 278, 41742–41748.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, F., Brunet, N. M., Grubich, J. R., Bienkiewicz, E. A., Asbury, T. M., Compton, L. A., Mihajlovic, G., Miller, V. F., and Chase, P. B. (2011) Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin, J. Biomed. Biotechnol., 2011, 435271.

    PubMed  PubMed Central  Google Scholar 

  53. Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E., and Seidman, J. G. (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation, Cell, 62, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  54. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban, M., Gueffet, J. P., Millaire, A., Desnos, M., Schwartz, K., Hainque, B., Komajda, M., and Project, E. H. F. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy, Circulation, 107, 2227–2232.

    Article  PubMed  Google Scholar 

  55. Jaaskelainen, P., Soranta, M., Miettinen, R., Saarinen, L., Pihlajamaki, J., Silvennoinen, K., Tikanoja, T., Laakso, M., and Kuusisto, J. (1998) The cardiac beta-myosin heavy chain gene is not the predominant gene for hypertrophic cardiomyopathy in the Finnish population, J. Am. Coll. Cardiol., 32, 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  56. Tardiff, J. C. (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes, Heart Failure Rev., 10, 237–248.

    Article  CAS  Google Scholar 

  57. Jefferies, J. L., and Towbin, J. A. (2010) Dilated cardiomyopathy, Lancet, 375, 752–762.

    Article  PubMed  Google Scholar 

  58. Dellefave, L., and McNally, E. M. (2010) The genetics of dilated cardiomyopathy, Curr. Opin. Cardiol., 25, 198–204.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chang, A. N., Harada, K., Ackerman, M. J., and Potter, J. D. (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in alpha-tropomyosin, J. Biol. Chem., 280, 34343–34349.

    Article  CAS  PubMed  Google Scholar 

  60. Lakdawala, N. K., Dellefave, L., Redwood, C. S., Sparks, E., Cirino, A. L., Depalma, S., Colan, S. D., Funke, B., Zimmerman, R. S., Robinson, P., Watkins, H., Seidman, C. E., Seidman, J. G., McNally, E. M., and Ho, C. Y. (2010) Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy, J. Am. Coll. Cardiol., 55, 320–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marston, S. B. (2011) How do mutations in contractile proteins cause the primary familial cardiomyopathies? J. Cardiovasc. Transl. Res., 4, 245–255.

    Article  PubMed  Google Scholar 

  62. Rodriguez Cruz, P. M., Sewry, C., Beeson, D., Jayawant, S., Squier, W., McWilliam, R., and Palace, J. (2014) Congenital myopathies with secondary neuromuscular transmission defects; a case report and review of the literature, Neuromuscul. Disord., 24, 1103–1110.

    Article  PubMed  Google Scholar 

  63. Tajsharghi, H., Ohlsson, M., Palm, L., and Oldfors, A. (2012) Myopathies associated with beta-tropomyosin mutations, Neuromuscul. Disord., 22, 923–933.

    Article  CAS  PubMed  Google Scholar 

  64. Ochala, J. (2008) Thin filament proteins mutations associated with skeletal myopathies: defective regulation of muscle contraction, J. Mol. Med., 86, 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  65. Marttila, M., Lehtokari, V. L., Marston, S., Nyman, T. A., et al. (2014) Mutation update and genotype–phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies, Hum. Mutat., 35, 779–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abicht, A., Dusl, M., Gallenmuller, C., Guergueltcheva, V., Schara, U., Della Marina, A., Wibbeler, E., Almaras, S., Mihaylova, V., von der Hagen, M., Huebner, A., Chaouch, A., Muller, J. S., and Lochmuller, H. (2012) Congenital myasthenic syndromes: achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: a study of 680 patients, Hum. Mutat., 33, 1474–1484.

    Article  CAS  PubMed  Google Scholar 

  67. Finlayson, S., Beeson, D., and Palace, J. (2013) Congenital myasthenic syndromes: an update, Pract. Neurol., 13, 80–91.

    Article  PubMed  Google Scholar 

  68. Orzechowski, M., Fischer, S., Moore, J. R., Lehman, W., and Farman, G. P. (2014) Energy landscapes reveal the myopathic effects of tropomyosin mutations, Arch. Biochem. Biophys., 564, 89–99.

    Article  CAS  PubMed  Google Scholar 

  69. Kremneva, E., Boussouf, S., Nikolaeva, O., Maytum, R., Geeves, M. A., and Levitsky, D. I. (2004) Effects of two familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin, Biophys. J., 87, 3922–3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marston, S., Memo, M., Messer, A., Papadaki, M., Nowak, K., McNamara, E., Ong, R., El-Mezgueldi, M., Li, X., and Lehman, W. (2013) Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients, Hum. Mol. Genet., 22, 4978–4987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupte, T. M., Haque, F., Gangadharan, B., Sunitha, M. S., Mukherjee, S., Anandhan, S., Rani, D. S., Mukundan, N., Jambekar, A., Thangaraj, K., Sowdhamini, R., Sommese, R. F., Nag, S., Spudich, J. A., and Mercer, J. A. (2015) Mechanistic heterogeneity in contractile properties of alpha-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies, J. Biol. Chem., 290, 7003–7015.

    Article  CAS  PubMed  Google Scholar 

  72. Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Popruga, K. E., Artemova, N. V., Pivovarova, A. V., Bershitsky, S. Y., and Levitsky, D. I. (2017) Structural and functional effects of cardiomyopathy-causing mutations in the troponin T-binding region of cardiac tropomyosin, Biochemistry, 56, 250–259.

    Article  CAS  PubMed  Google Scholar 

  73. Farman, G. P., Rynkiewicz, M. J., Orzechowski, M., Lehman, W., and Moore, J. R. (2018) HCM and DCM cardiomyopathy-linked alpha-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments, Arch. Biochem. Biophys., 647, 84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinkle, A., and Tobacman, L. S. (2003) Folding and function of the troponin tail domain. Effects of cardiomyopath-ic troponin T mutations, J. Biol. Chem., 278, 506–513.

    Article  CAS  PubMed  Google Scholar 

  75. Jagatheesan, G., Rajan, S., Petrashevskaya, N., Schwartz, A., Boivin, G., Arteaga, G., de Tombe, P. P., Solaro, R. J., and Wieczorek, D. F. (2004) Physiological significance of troponin T binding domains in striated muscle tropomyosin, Am. J. Physiol. Heart Circ. Physiol., 287, H1484–1494.

    Article  CAS  PubMed  Google Scholar 

  76. Moore, R. K., Abdullah, S., and Tardiff, J. C. (2014) Allosteric effects of cardiac troponin TNT1 mutations on actomyosin binding: a novel pathogenic mechanism for hypertrophic cardiomyopathy, Arch. Biochem. Biophys., 552–553, 21–28.

    Article  PubMed  CAS  Google Scholar 

  77. Gangadharan, B., Sunitha, M. S., Mukherjee, S., Chowdhury, R. R., Haque, F., Sekar, N., Sowdhamini, R., Spudich, J. A., and Mercer, J. A. (2017) Molecular mechanisms and structural features of cardiomyopathy-causing troponin T mutants in the tropomyosin overlap region, Proc. Natl. Acad. Sci. USA, 114, 11115–11120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McConnell, M., Tal Grinspan, L., Williams, M. R., Lynn, M. L., Schwartz, B. A., Fass, O. Z., Schwartz, S. D., and Tardiff, J. C. (2017) Clinically divergent mutation effects on the structure and function of the human cardiac tropomyosin overlap, Biochemistry, 56, 3403–3413.

    Article  CAS  PubMed  Google Scholar 

  79. Abdullah, S., Lynn, M. L., McConnell, M. T., Klass, M. M., Baldo, A. P., Schwartz, S. D., and Tardiff, J. C. (2019) FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Δ160E mutation, J. Biol. Chem., 294, 14634–14647, doi: 10.1074/jbc.RA118.005098.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Heeley, D. H., Golosinska, K., and Smillie, L. B. (1987) The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C, J. Biol. Chem., 262, 9971–9978.

    CAS  PubMed  Google Scholar 

  81. Palm, T., Graboski, S., Hitchcock-DeGregori, S. E., and Greenfield, N. J. (2001) Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region, Biophys. J., 81, 2827–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin, J. P., and Chong, S. M. (2010) Localization of the two tropomyosin-binding sites of troponin T, Arch. Biochem. Biophys., 500, 144–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Regitz-Zagrosek, V., Erdmann, J., Wellnhofer, E., Raible, J., and Fleck, E. (2000) Novel mutation in the alpha-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy, Circulation, 102, E112–116.

    Article  CAS  PubMed  Google Scholar 

  84. Sequeira, V., Wijnker, P. J., Nijenkamp, L. L., Kuster, D. W., Najafi, A., Witjas-Paalberends, E. R., Regan, J. A., Boontje, N., Ten Cate, F. J., Germans, T., Carrier, L., Sadayappan, S., van Slegtenhorst, M. A., Zaremba, R., Foster, D. B., Murphy, A. M., Poggesi, C., Dos Remedios, C., Stienen, G. J., Ho, C. Y., Michels, M., and van der Velden, J. (2013) Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations, Circ. Res., 112, 1491–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lehrer, S. S., and Geeves, M. A. (2014) The myosin-activated thin filament regulatory state, M(–)-open: a link to hypertrophic cardiomyopathy (HCM), J. Muscle Res. Cell Motil., 35, 153–160.

    Article  CAS  PubMed  Google Scholar 

  86. Lang, R., Gomes, A. V., Zhao, J., Housmans, P. R., Miller, T., and Potter, J. D. (2002) Functional analysis of a troponin I (R145G) mutation associated with familial hypertrophic cardiomyopathy, J. Biol. Chem., 277, 11670–11678.

    Article  CAS  PubMed  Google Scholar 

  87. Kobayashi, T., and Solaro, R. J. (2006) Increased Ca2+ affinity of cardiac thin filaments reconstituted with cardiomyopathy-related mutant cardiac troponin I, J. Biol. Chem., 281, 13471–13477.

    Article  CAS  PubMed  Google Scholar 

  88. Boussouf, S. E., Maytum, R., Jaquet, K., and Geeves, M. A. (2007) Role of tropomyosin isoforms in the calcium sensitivity of striated muscle thin filaments, J. Muscle Res. Cell Motil., 28, 49–58.

    Article  CAS  PubMed  Google Scholar 

  89. Ly, S., and Lehrer, S. S. (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin, Biochemistry, 51, 6413–6420.

    Article  CAS  PubMed  Google Scholar 

  90. Deranek, A. E., Klass, M. M., and Tardiff, J. C. (2019) Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems, Pflugers’ Arch., 471, 661–671.

    Article  CAS  Google Scholar 

  91. Greenfield, N. J., and Fowler, V. M. (2002) Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin, Biophys. J., 82, 2580–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Colpan, M., Moroz, N. A., Gray, K. T., Cooper, D. A., Diaz, C. A., and Kostyukova, A. S. (2016) Tropomyosin-binding properties modulate competition between tropomodulin isoforms, Arch. Biochem. Biophys., 600, 23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Colpan, M., Ly, T., Grover, S., Tolkatchev, D., and Kostyukova, A. S. (2017) The cardiomyopathy-associated K15N mutation in tropomyosin alters actin filament pointed end dynamics, Arch. Biochem. Biophys., 630, 18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ly, T., Pappas, C. T., Johnson, D., Schlecht, W., Colpan, M., Galkin, V. E., Gregorio, C. C., Dong, W. J., and Kostyukova, A. S. (2019) Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics, Mol. Biol. Cell, 30, 268–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moraczewska, J. (2019) Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1, J. Muscle Res. Cell Motil., July 3, [Epub ahead of print], doi: 10.1007/s10974-019-09532-y.

    Google Scholar 

  96. Clarke, N. F., Waddell, L. B., Sie, L. T., van Bon, B. W., McLean, C., Clark, D., Kornberg, A., Lammens, M., and North, K. N. (2012) Mutations in TPM2 and congenital fiber type disproportion, Neuromusc. Disord., 22, 955–958.

    Article  PubMed  Google Scholar 

  97. Marttila, M., Lemola, E., Wallefeld, W., Memo, M., Donner, K., Laing, N. G., Marston, S., Gronholm, M., and Wallgren-Pettersson, C. (2012) Abnormal actin binding of aberrant beta-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy, Biochem. J., 442, 231–239.

    Article  CAS  PubMed  Google Scholar 

  98. Robaszkiewicz, K., Dudek, E., Kasprzak, A. A., and Moraczewska, J. (2012) Functional effects of congenital myopathy-related mutations in gamma-tropomyosin gene, Biochim. Biophys. Acta, 1822, 1562–1569.

    Article  CAS  PubMed  Google Scholar 

  99. Memo, M., and Marston, S. (2013) Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function, J. Muscle Res. Cell Motil., 34, 165–169.

    Article  CAS  PubMed  Google Scholar 

  100. Karpicheva, O. E., Simonyan, A. O., Kuleva, N. V., Redwood, C. S., and Borovikov, Y. S. (2016) Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle, Biochim. Biophys. Acta, 1864, 260–267.

    Article  CAS  PubMed  Google Scholar 

  101. Borovikov, Y. S., Rysev, N. A., Karpicheva, O. E., Sirenko, V. V., Avrova, S. V., Piers, A., and Redwood, C. S. (2017) Molecular mechanisms of dysfunction of muscle fibers associated with Glu139 deletion in TPM2 gene, Sci. Rep., 7, 16797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Borovikov, Y. S., Karpicheva, O. E., Simonyan, A. O., Avrova, S. V., Rogozovets, E. A., Sirenko, V. V., and Redwood, C. S. (2018) The primary causes of muscle dysfunction associated with the point mutations in Tpm3.12; conformational analysis of mutant proteins as a tool for classification of myopathies, Int. J. Mol. Sci., 19, 3975, doi: 10.3390/ijms19123975.

    Article  PubMed Central  Google Scholar 

  103. Avrova, S. V., Karpicheva, O. E., Simonyan, A. O., Sirenko, V. V., Redwood, C. S., and Borovikov, Y. S. (2019), The molecular mechanisms of a high Ca2+-sensitivity and muscle weakness associated with the Ala155Thr substitution in Tpm3.12, Biochem. Biophys. Res. Commun., 515, 372–377.

    Article  CAS  PubMed  Google Scholar 

  104. Kostyukova, A. S. (2007) Leiomodin/tropomyosin interactions are isoform specific, Arch. Biochem. Biophys., 465, 227–230.

    Article  CAS  PubMed  Google Scholar 

  105. Kostyukova, A. S., Hitchcock-Degregori, S. E., and Greenfield, N. J. (2007) Molecular basis of tropomyosin binding to tropomodulin, an actin-capping protein, J. Mol. Biol., 372, 608–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ilkovski, B., Mokbel, N., Lewis, R. A., Walker, K., Nowak, K. J., Domazetovska, A., Laing, N. G., Fowler, V. M., North, K. N., and Cooper, S. T. (2008) Disease severity and thin filament regulation in M9R TPM3 nemaline myopathy, J. Neuropathol. Exp. Neurol., 67, 867–877.

    Article  CAS  PubMed  Google Scholar 

  107. Moraczewska, J., Robaszkiewicz, K., Sliwinska, M., Czajkowska, M., Ly, T., Kostyukova, A., Wen, H., and Zheng, W. (2019) Congenital myopathy-related mutations in tropomyosin disrupt regulatory function through altered actin affinity and tropomodulin binding, FEBS J., 286, 1877–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ochala, J., Lehtokari, V. L., Iwamoto, H., Li, M., Feng, H. Z., Jin, J. P., Yagi, N., Wallgren-Pettersson, C., Penisson-Besnier, I., and Larsson, L. (2011) Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy, FASEB J., 25, 1903–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kiss, B., Lee, E. J., Ma, W., Li, F. W., Tonino, P., Mijailovich, S. M., Irving, T. C., and Granzier, H. L. (2018) Nebulin stiffens the thin filament and augments cross-bridge interaction in skeletal muscle, Proc. Natl. Acad. Sci. USA, 115, 10369–10374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marttila, M., Hanif, M., Lemola, E., Nowak, K. J., Laitila, J., Gronholm, M., Wallgren-Pettersson, C., and Pelin, K. (2014) Nebulin interactions with actin and tropomyosin are altered by disease-causing mutations, Skeletal Muscle, 4, 15, doi: 10.1186/2044-5040-4-15.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Loong, C. K., Badr, M. A., and Chase, P. B. (2012) Tropomyosin flexural rigidity and single Ca2+ regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy, Front. Physiol., 3, 80, doi: 10.3389/fphys.2012. 00080.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice, J. Mol. Cell. Cardiol., 33, 1815–1828.

    Article  CAS  PubMed  Google Scholar 

  113. Burkart, E. M., Arteaga, G. M., Sumandea, M. P., Prabhakar, R., Wieczorek, D. F., and Solaro, R. J. (2003) Altered signaling surrounding the C-lobe of cardiac troponin C in myofilaments containing an alpha-tropomyosin mutation linked to familial hypertrophic cardiomyopathy, J. Mol. Cell. Cardiol., 35, 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  114. Nevzorov, I., Redwood, C., and Levitsky, D. (2008) Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly, J. Muscle Res. Cell Motil., 29, 173–176.

    Article  CAS  PubMed  Google Scholar 

  115. Borovikov, Y. S., Avrova, S. V., Rysev, N. A., Sirenko, V. V., Simonyan, A. O., Chernev, A. A., Karpicheva, O. E., Piers, A., and Redwood, C. S. (2015) Aberrant movement of beta-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle, Arch. Biochem. Biophys., 577–578, 11–23.

    Article  PubMed  CAS  Google Scholar 

  116. Akkari, P. A., Song, Y., Hitchcock-DeGregori, S., Blechynden, L., and Laing, N. (2002) Expression and biological activity of baculovirus generated wild-type human slow alpha tropomyosin and the Met9Arg mutant responsible for a dominant form of nemaline myopathy, Biochem. Biophys. Res. Commun., 296, 300–304.

    Article  PubMed  CAS  Google Scholar 

  117. Kalyva, A., Schmidtmann, A., and Geeves, M. A. (2012) In vitro formation and characterization of the skeletal muscle alpha, beta-tropomyosin heterodimers, Biochemistry, 51, 6388–6399.

    Article  CAS  PubMed  Google Scholar 

  118. Perry, S. V. (2001) Vertebrate tropomyosin: distribution, properties and function, J. Muscle Res. Cell Motil., 22, 5–49.

    Article  CAS  PubMed  Google Scholar 

  119. Matyushenko, A. M., Kleymenov, S. Y., Susorov, D. S., and Levitsky, D. I. (2018) Thermal unfolding of homodimers and heterodimers of different skeletal-muscle isoforms of tropomyosin, Biophys. Chem., 243, 1–7.

    Article  CAS  PubMed  Google Scholar 

  120. Lehrer, S. S., and Joseph, D. (1987) Differences in local conformation around cysteine residues in alpha alpha, alpha beta, and beta beta rabbit skeletal tropomyosin, Arch. Biochem. Biophys., 256, 1–9.

    Article  CAS  PubMed  Google Scholar 

  121. Bronson, D. D., and Schachat, F. H. (1982) Heterogeneity of contractile proteins. Differences in tropomyosin in fast, mixed, and slow skeletal muscles of the rabbit, J. Biol. Chem., 257, 3937–3944.

    CAS  PubMed  Google Scholar 

  122. Bicer, S., and Reiser, P. J. (2013) Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles, J. Muscle Res. Cell Motil., 34, 211–231.

    Article  CAS  PubMed  Google Scholar 

  123. Lehrer, S. S. (1975) Intramolecular crosslinking of tropomyosin via disulfide bond formation: evidence for chain register, Proc. Natl. Acad. Sci. USA, 72, 3377–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bershitsky, S. Y., Logvinova, D. S., Shchepkin, D. V., Kopylova, G. V., and Matyushenko, A. M. (2019) Myopathic mutations in the beta-chain of tropomyosin differently affect the structural and functional properties of ββ- and αβ-dimers, FASEB J., 33, 1963–1971.

    Article  CAS  PubMed  Google Scholar 

  125. Matyushenko, A. M., Shchepkin, D. V., Susorov, D. S., Nefedova, V. V., Kopylova, G. V., Berg, V. Y., Kleymenov, S. Y., and Levitsky, D. I. (2019) Structural and functional properties of αβ-heterodimers of tropomyosin with myo-pathic mutations Q147P and K49del in the β-chain, Biochem. Biophys. Res. Commun., 508, 934–939.

    Article  CAS  PubMed  Google Scholar 

  126. Janco, M., Kalyva, A., Scellini, B., Piroddi, N., Tesi, C., Poggesi, C., and Geeves, M. A. (2012) α-Tropomyosin with a D175N or E180G mutation in only one chain differs from tropomyosin with mutations in both chains, Biochemistry, 51, 9880–9890.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding. This work was supported by the Russian Foundation for Basic Research (project 17-00-00065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Matyushenko or D. I. Levitsky.

Ethics declarations

Compliance with ethical norms. This article does not contain description of studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other area.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 43–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyushenko, A.M., Levitsky, D.I. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. Biochemistry Moscow 85 (Suppl 1), 20–33 (2020). https://doi.org/10.1134/S0006297920140023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920140023

Keywords

Navigation