Skip to main content
Log in

Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function

  • News and Views
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

It is well known that the regulation of muscle contraction relies on the ability of tropomyosin to switch between different positions on the actin filament, but it is still not well understood which amino acids are directly involved in the different states of the interaction. Recently the structure of the actin–tropomyosin interface has been determined both in the absence and presence of myosin heads. Interestingly, a number of mutations in tropomyosin that are associated with skeletal muscle myopathy are located within this interface. We first give an overview of the functional effect of mutations on amino acids that are involved in the contact with actin asp25, which represent a pattern repeated seven times along tropomyosin. It is explained how some of these amino acids (R167 and R244) which are thought to be involved in a salt bridge contact with actin in the closed state can produce a loss-of-function when mutated, while other positively charged tropomyosin amino acids positioned on the downstream side of the contact (K7, K49, R91, K168) can produce a gain-of-function when mutated. We then consider mutations of amino acids involved in another salt bridge contact between the two proteins in the closed state, actin K326N (which binds on five different points of tropomyosin) and tropomyosin ∆E139 and E181K, and we report how all of these mutations produce a gain-of-function. These observations can be important to validate the proposed structures and to understand more deeply how mutations affect the function of these proteins and to enable prediction of their outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barua B, Fagnant PM, Winkelmann DA, Trybus KM, Hitchcock-Degregori SE (2013) A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin–tropomyosin. J Biol Chem 288:9602–9609

    Article  PubMed  CAS  Google Scholar 

  • Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin–tropomyosin–myosin complex. Cell 150:327–338

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C (2005) Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci USA 102:18878–18883

    Article  PubMed  CAS  Google Scholar 

  • Clarke NF, Kolski H, Dye DE, Lim E, Smith RLL, Patel R, Fahey MC, Bellance R, Romero NB, Johnson ES, Labarre-Vila A, Monnier N, Laing NG, North KN (2008) Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol 63:329–337

    Article  PubMed  CAS  Google Scholar 

  • Clarke NF, Domazetovska A, Waddell L, Kornberg A, Mclean C, North KN (2009) Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscul Disord 19:348–351

    Article  PubMed  Google Scholar 

  • Clarke NF, Waddell LB, Sie LTL, van Bon BWM, Mclean C, Clark D, Kornberg A, Lammens M, North KN (2012) Mutations in TPM2 and congenital fibre type disproportion. Neuromuscul Disord 22:955–958

    Article  PubMed  Google Scholar 

  • Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, Love S, Born DE, Roper H, Majumdar A, Jayadev S, Underhill HR, Smith CO, von der Hagen M, Hubner A, Jardine P, Merrison A, Curtis E, Cullup T, Jungbluth H, Cox MO, Winder TL, Abdel Salam H, Li JZ, Moore SA, Dowling JJ (2013) Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain 136:508–521

    Article  PubMed  Google Scholar 

  • Donner K, Ollikainen M, Ridanpää M, Christen H-J, Goebel HH, de Visser M, Pelin K, Wallgren-Pettersson C (2002) Mutations in the beta-tropomyosin (TPM2) gene–a rare cause of nemaline myopathy. Neuromuscul Disord 12:151–158

    Article  PubMed  Google Scholar 

  • Feng JJ, Marston S (2009) Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromusc Disord 19:6–16

    Article  PubMed  Google Scholar 

  • Frye J, Klenchin VA, Rayment I (2010) Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Biochemistry 49:4908–4920

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364:80–96

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Jayawant S, Squier W, Muntoni F, Sewry CA, Manzur A, Quinlivan R, Lillis S, Jungbluth H, Sparrow JC, Ravenscroft G, Nowak KJ, Memo M, Marston SB, Laing NG (2012) Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurology 78:1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Jarraya M, Quijano-Roy S, Monnier N, Béhin A, Avila-Smirnov D, Romero NB, Allamand V, Richard P, Barois A, May A, Estournet B, Mercuri E, Carlier PG, Carlier R-Y (2012) Whole-Body muscle MRI in a series of patients with congenital myopathy related to TPM2 gene mutations. Neuromuscul Disord 22:S137–S147

    Article  PubMed  Google Scholar 

  • Kiphuth IC, Krause S, Huttner HB, Dekomien G, Struffert T, Schröder R (2010) Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. J Neurol 257:658–660

    Article  PubMed  CAS  Google Scholar 

  • Laing NG, Nowak KJ (2005) When contractile proteins go bad: the sarcomere and skeletal muscle disease. BioEssays 27:809–822

    Article  PubMed  CAS  Google Scholar 

  • Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, Blumbergs P, White S, Watkins H, Love DR (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 10:249

    PubMed  CAS  Google Scholar 

  • Lehman W, Orzechowski M, Li XE, Fischer S, Raunser S (2013) Gestalt-Binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil. doi:10.1007/s10974-013-9342-0

  • Lehtokari V-L, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord 17:433–442

    Article  PubMed  Google Scholar 

  • Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Marston SB, Lehman W, Li X, Memo M (2013) A repeating structural motif in tropomyosin that is responsible for multiple gain of function skeletal myopathy mutations. Biophys J 104:646a–647a

    Article  Google Scholar 

  • Marttila M, Lemola E, Wallefeld W, Memo M, Donner K, Laing NG, Marston S, Grönholm M, Wallgren-Pettersson C (2012) Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J 442:231–239

    Article  PubMed  CAS  Google Scholar 

  • McLachlan AD, Stewart M (1976) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103:271–298

    Article  PubMed  CAS  Google Scholar 

  • Memo, M. 2012. Molecular mechanisms of myopathies. PhD thesis, Imperial College London

  • Mokbel N, Ilkovski B, Kreissl M, Memo M, Jeffries CM, Marttila M, Lehtokari VL, Lemola E, Gronholm M, Yang N, Menard D, Marcorelles P, Echaniz-Laguna A, Reimann J, Vainzof M, Monnier N, Ravenscroft G, McNamara E, Nowak KJ, Laing NG, Wallgren-Pettersson C, Trewhella J, Marston S, Ottenheijm C, North KN, Clarke NF (2013) K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain 136:494–507

    Article  PubMed  Google Scholar 

  • Ochala, J, Li M, Ohlsson M, Oldfors A, Larson L (2008) Defective regulation of contractile function in muscle fibres carrying an E41K β-tropomyosin mutation. J Physiol 586:2993–3004

    Google Scholar 

  • Ochala J, Gokhin DS, Pénisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM (2012) Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 21:4473–4485

    Article  PubMed  CAS  Google Scholar 

  • Orzechowski M, Fischer S, Lehman W et al (2013) Influence of actin mutation on the energy landscape of actin–tropomyosin filaments. Biophys J 104:480a

    Article  Google Scholar 

  • Palm T, Graboski S, Hitchcock-DeGregori SE, Greenfield NJ (2001) Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys J 81:2827–2837

    Google Scholar 

  • Robinson P, Lipscomb S, Preston LC, Altin E, Watkins H, Ashley CC, Redwood CS (2007) Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J. 21:896–905

    Article  PubMed  CAS  Google Scholar 

  • Tajsharghi H, Ohlsson M, Palm L, Oldfors A (2012) Myopathies associated with β-tropomyosin mutations. Neuromuscul Disord 22:923–933

    Article  PubMed  CAS  Google Scholar 

  • Tan P, Briner J, Boltshauser E, Davis MR, Wilton SD, North K, Wallgren-Pettersson C, Laing NG (1999) Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9:573–579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from The British Heart Foundation (RG/11/20/29266 and FS/07/057/23834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Memo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memo, M., Marston, S. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function. J Muscle Res Cell Motil 34, 165–169 (2013). https://doi.org/10.1007/s10974-013-9344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9344-y

Keywords

Navigation