Pelletier, J., and Sonenberg, N. (2019) The organizing principles of eukaryotic ribosome recruitment, Annu. Rev. Biochem., 88, 307-335, doi:
https://doi.org/10.1146/annurev-biochem-013118-111042.
CAS
Article
PubMed
Google Scholar
Yusupova, G., and Yusupov, M. (2014) High-resolution structure of the eukaryotic 80S ribosome, Annu. Rev. Biochem., 83, 467-486, doi:
https://doi.org/10.1146/annurev-biochem-060713-035445.
CAS
Article
PubMed
Google Scholar
Weisser, M., and Ban, N. (2019) Extensions, extra factors, and extreme complexity: ribosomal structures provide insights into eukaryotic translation, Cold Spring Harb. Perspect. Biol., 11, a032367, doi:
https://doi.org/10.1101/cshperspect.a032367.
CAS
Article
PubMed
Google Scholar
Andreev, D. E., O’Connor, P. B., Loughran, G., Dmitriev, S. E., Baranov, P. V., and Shatsky, I. N. (2017) Insights into the mechanisms of eukaryotic translation gained with ribosome profiling, Nucleic Acids Res., 45, 513-526, doi:
https://doi.org/10.1093/nar/gkw1190.
CAS
Article
PubMed
Google Scholar
Hinnebusch, A. G. (2017) Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation, Trends Biochem. Sci., 42, 589-611, doi:
https://doi.org/10.1016/j.tibs.2017.03.004.
CAS
Article
PubMed
Google Scholar
Schuller, A. P., and Green, R. (2018) Roadblocks and resolutions in eukaryotic translation, Nat. Rev. Mol. Cell Biol., 19, 526-541, doi:
https://doi.org/10.1038/s41580-018-0011-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilson, D. N. (2009) The A-Z of bacterial translation inhibitors, Crit. Rev. Biochem. Mol. Biol., 44, 393-433, doi:
https://doi.org/10.3109/10409230903307311.
CAS
Article
PubMed
Google Scholar
Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S., and Gagnon, M. G. (2018) Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design, Annu. Rev. Biochem., 87, 451-478, doi:
https://doi.org/10.1146/annurev-biochem-062917-011942.
CAS
Article
PubMed
Google Scholar
Yusupova, G., and Yusupov, M. (2017) Crystal structure of eukaryotic ribosome and its complexes with inhibitors, Philos. Trans. R. Soc. London B Biol. Sci., 372, 20160184, doi:
https://doi.org/10.1098/rstb.2016.0184.
CAS
Article
PubMed
Google Scholar
Vazquez, D. (1979) Inhibitors of protein biosynthesis, Mol. Biol. Biochem. Biophys., 30, 1-312, doi:
https://doi.org/10.1007/978-3-642-81309-2.
Article
Google Scholar
Pestka, S. (1971) Inhibitors of ribosome functions, Annu. Rev. Microbiol., 25, 487-562, doi:
https://doi.org/10.1146/annurev.mi.25.100171.002415.
CAS
Article
PubMed
Google Scholar
Pestka, S. (1974) The use of inhibitors in studies on protein synthesis, Methods Enzymol., 30, 261-282, doi:
https://doi.org/10.1016/0076-6879(74)30030-4.
CAS
Article
PubMed
Google Scholar
Jiménez, A., and Vázquez, D. (1983) Novel Inhibitors of Translation in Eukaryotic Systems, in Modes and Mechanisms of Microbial Growth Inhibitors (Hahn, F. E., ed.) Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 248-254.
Garreau de Loubresse, N., Prokhorova, I., Holtkamp, W., Rodnina, M. V., Yusupova, G., and Yusupov, M. (2014) Structural basis for the inhibition of the eukaryotic ribosome, Nature, 513, 517-522, doi:
https://doi.org/10.1038/nature13737.
CAS
Article
PubMed
Google Scholar
Barbacid, M., and Vazquez, D. (1974) (3H)anisomycin binding to eukaryotic ribosomes, J. Mol. Biol., 84, 603-623, doi:
https://doi.org/10.1016/0022-2836(74)90119-3.
CAS
Article
PubMed
Google Scholar
Wu, C. C., Zinshteyn, B., Wehner, K. A., and Green, R. (2019) High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress, Mol. Cell, 73, 959-970 e955, doi:
https://doi.org/10.1016/j.molcel.2018.12.009.
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbacid, M., Fresno, M., and Vazquez, D. (1975) Inhibitors of polypeptide elongation on yeast polysomes, J. Antibiot. (Tokyo), 28, 453-462, doi:
https://doi.org/10.7164/antibiotics.28.453.
CAS
Article
Google Scholar
Fresno, M., Carrasco, L., and Vazquez, D. (1976) Initiation of the polypeptide chain by reticulocyte cell-free systems. Survey of different inhibitors of translation, Eur. J. Biochem., 68, 355-364, doi:
https://doi.org/10.1111/j.1432-1033.1976.tb10822.x.
CAS
Article
PubMed
Google Scholar
Cundliffe, E., Cannon, M., and Davies, J. (1974) Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins, Proc. Natl. Acad. Sci. USA, 71, 30-34, doi:
https://doi.org/10.1073/pnas.71.1.30.
CAS
Article
PubMed
Google Scholar
Pellegrino, S., Meyer, M., Zorbas, C., Bouchta, S. A., Saraf, K., et al. (2018) The amaryllidaceae alkaloid haemanthamine binds the eukaryotic ribosome to repress cancer cell growth, Structure, 26, 416-425 e414, doi:
https://doi.org/10.1016/j.str.2018.01.009.
CAS
Article
PubMed
Google Scholar
Baez, A., and Vazquez, D. (1978) Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship, Biochim. Biophys. Acta, 518, 95-103, doi:
https://doi.org/10.1016/0005-2787(78)90119-3.
CAS
Article
PubMed
Google Scholar
Jimenez, A., Santos, A., Alonso, G., and Vazquez, D. (1976) Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids, Biochim. Biophys. Acta, 425, 342-348, doi:
https://doi.org/10.1016/0005-2787(76)90261-6.
CAS
Article
PubMed
Google Scholar
Fresno, M., Jimenez, A., and Vazquez, D. (1977) Inhibition of translation in eukaryotic systems by harringtonine, Eur. J. Biochem., 72, 323-330, doi:
https://doi.org/10.1111/j.1432-1033.1977.tb11256.x.
CAS
Article
PubMed
Google Scholar
Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789-802, doi:
https://doi.org/10.1016/j.cell.2011.10.002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tscherne, J. S., and Pestka, S. (1975) Inhibition of protein synthesis in intact HeLa cells, Antimicrob. Agents Chemother., 8, 479-487, doi:
https://doi.org/10.1128/aac.8.4.479.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gurel, G., Blaha, G., Moore, P. B., and Steitz, T. A. (2009) U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome, J. Mol. Biol., 389, 146-156, doi:
https://doi.org/10.1016/j.jmb.2009.04.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Winer, E. S., and DeAngelo, D. J. (2018) A review of omacetaxine: a chronic myeloid leukemia treatment resurrected, Oncol. Ther., 6, 9-20, doi:
https://doi.org/10.1007/s40487-018-0058-6.
Article
PubMed
PubMed Central
Google Scholar
Wang, Z., and Yang, L. (2020) Turning the tide: natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection, Front. Pharmacol., 11, 1013, doi:
https://doi.org/10.3389/fphar.2020.01013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang, M. T. (1975) Harringtonine, an inhibitor of initiation of protein biosynthesis, Mol. Pharmacol., 11, 511-519.
CAS
PubMed
Google Scholar
Carter, C. J., and Cannon, M. (1977) Structural requirements for the inhibitory action of 12,13-epoxytrichothecenes on protein synthesis in eukaryotes, Biochem. J., 166, 399-409, doi:
https://doi.org/10.1042/bj1660399.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cannon, M., Jimenez, A., and Vazquez, D. (1976) Competition between trichodermin and several other sesquiterpene antibiotics for binding to their receptor site(s) on eukaryotic ribosomes, Biochem. J., 160, 137-145, doi:
https://doi.org/10.1042/bj1600137.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ehrlich, K. C., and Daigle, K. W. (1987) Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes, Biochim. Biophys. Acta, 923, 206-213, doi:
https://doi.org/10.1016/0304-4165(87)90005-5.
CAS
Article
PubMed
Google Scholar
Carter, C. J., and Cannon, M. (1978) Inhibition of eukaryotic ribosomal function by the sesquiterpenoid antibiotic fusarenon-X, Eur. J. Biochem., 84, 103-111, doi:
https://doi.org/10.1111/j.1432-1033.1978.tb12146.x.
CAS
Article
PubMed
Google Scholar
Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., et al. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin, Nat. Chem. Biol., 6, 209-217, doi:
https://doi.org/10.1038/nchembio.304.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chan, J., Khan, S. N., Harvey, I., Merrick, W., and Pelletier, J. (2004) Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles, RNA, 10, 528-543, doi:
https://doi.org/10.1261/rna.5200204.
CAS
Article
PubMed
PubMed Central
Google Scholar
McClary, B., Zinshteyn, B., Meyer, M., Jouanneau, M., Pellegrino, S., et al. (2017) Inhibition of eukaryotic translation by the antitumor natural product agelastatin A, Cell Chem. Biol., 24, 605-613 e605, doi:
https://doi.org/10.1016/j.chembiol.2017.04.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cuendet, M., and Pezzuto, J. M. (2004) Antitumor activity of bruceantin: an old drug with new promise, J. Nat. Prod., 67, 269-272, doi:
https://doi.org/10.1021/np030304+.
CAS
Article
PubMed
Google Scholar
Fresno, M., Gonzales, A., Vazquez, D., and Jimenez, A. (1978) Bruceantin, a novel inhibitor of peptide bond formation, Biochim. Biophys. Acta, 518, 104-112, doi:
https://doi.org/10.1016/0005-2787(78)90120-x.
CAS
Article
PubMed
Google Scholar
Zhang, L. L., Guo, J., Jiang, X. M., Chen, X. P., Wang, Y. T., Li, A., Lin, L. G., Li, H., and Lu, J. J. (2020) Identification of nagilactone E as a protein synthesis inhibitor with anticancer activity, Acta pharmacol. Sin., 41, 698-705, doi:
https://doi.org/10.1038/s41401-019-0332-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Polikanov, Y. S., Starosta, A. L., Juette, M. F., Altman, R. B., Terry, D. S., et al. (2015) Distinct tRNA accommodation intermediates observed on the ribosome with the antibiotics hygromycin A and A201A, Mol. Cell, 58, 832-844, doi:
https://doi.org/10.1016/j.molcel.2015.04.014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Amunts, A., Fiedorczuk, K., Truong, T. T., Chandler, J., Greenberg, E. P., and Ramakrishnan, V. (2015) Bactobolin A binds to a site on the 70S ribosome distinct from previously seen antibiotics, J. Mol. Biol., 427, 753-755, doi:
https://doi.org/10.1016/j.jmb.2014.12.018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hori, M., Suzukake, K., Ishikawa, C., Asakura, H., and Umezawa, H. (1981) Biochemical studies on bactobolin in relation to actinobolin, J. Antibiot. (Tokyo), 34, 465-468, doi:
https://doi.org/10.7164/antibiotics.34.465.
CAS
Article
Google Scholar
Cerna, J., Rychlik, I., and Lichtenthaler, F. W. (1973) The effect of the aminoacyl-4-aminohexosyl-cytosine group of antibiotics on ribosomal peptidyl transferase, FEBS Lett., 30, 147-150, doi:
https://doi.org/10.1016/0014-5793(73)80639-8.
CAS
Article
PubMed
Google Scholar
Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061-1075, doi:
https://doi.org/10.1016/s0022-2836(03)00668-5.
CAS
Article
PubMed
Google Scholar
Svidritskiy, E., Ling, C., Ermolenko, D. N., and Korostelev, A. A. (2013) Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome, Proc. Natl. Acad. Sci. USA, 110, 12283-12288, doi:
https://doi.org/10.1073/pnas.1304922110.
Article
PubMed
Google Scholar
Lashkevich, K. A., Shlyk, V. I., Kushchenko, A. S., Gladyshev, V. N., Alkalaeva, E. Z., and Dmitriev, S. E. (2020) CTELS: a cell-free system for the analysis of translation termination rate, Biomolecules, 10, 911, doi:
https://doi.org/10.3390/biom10060911.
CAS
Article
PubMed Central
Google Scholar
Gonzalez, A., Vazquez, D., and Jimenez, A. (1979) Inhibition of translation in bacterial and eukaryotic systems by the antibiotic anthelmycin (hikizimycin), Biochim. Biophys. Acta, 561, 403-409, doi:
https://doi.org/10.1016/0005-2787(79)90148-5.
CAS
Article
PubMed
Google Scholar
Sikorski, M. M., Cerna, J., Rychlik, I., and Legocki, A. B. (1977) Peptidyl transferase activity in wheat germ ribosomes. Effect of some antibiotics, Biochim. Biophys. Acta, 475, 123-130, doi:
https://doi.org/10.1016/0005-2787(77)90346-x.
CAS
Article
PubMed
Google Scholar
Leviev, I. G., Rodriguez-Fonseca, C., Phan, H., Garrett, R. A., Heilek, G., Noller, H. F., and Mankin, A. S. (1994) A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation, EMBO J., 13, 1682-1686.
CAS
Article
Google Scholar
Dmitriev, S. E., Akulich, K. A., Andreev, D. E., Terenin, I. M., and Shatsky, I. N. (2013) The peculiar mode of translation elongation inhibition by antitumor drug harringtonin, FEBS J., 280, 51-51, doi:
https://doi.org/10.1111/febs.12340.
CAS
Article
Google Scholar
Akulich, K. A., Sinitcyn, P. G., Lomakin, I. B., Andreev, D. E., Terenin, I. M., Smirnova, V. V., Mironov, A. A., Shatsky, I. N., and Dmitriev, S. E. (2017) Peptidyl transferase inhibitors arrest the ribosome at specific amino acid codons: insights from an integrated approach, FEBS J., 284, 296-296, doi:
https://doi.org/10.1111/febs.14174.
Article
Google Scholar
Michel, A. M., Andreev, D. E., and Baranov, P. V. (2014) Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning, BMC Bioinform., 15, 380, doi:
https://doi.org/10.1186/s12859-014-0380-4.
Article
Google Scholar
Marks, J., Kannan, K., Roncase, E. J., Klepacki, D., Kefi, A., Orelle, C., Vazquez-Laslop, N., and Mankin, A. S. (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center, Proc. Natl. Acad. Sci. USA, 113, 12150-12155, doi:
https://doi.org/10.1073/pnas.1613055113.
CAS
Article
PubMed
Google Scholar
Vazquez-Laslop, N., and Mankin, A. S. (2018) Context-specific action of ribosomal antibiotics, Ann. Rev. Microbiol., 72, 185-207, doi:
https://doi.org/10.1146/annurev-micro-090817-062329.
CAS
Article
Google Scholar
Kannan, K., Kanabar, P., Schryer, D., Florin, T., Oh, E., Bahroos, N., Tenson, T., Weissman, J. S., and Mankin, A. S. (2014) The general mode of translation inhibition by macrolide antibiotics, Proc. Natl. Acad. Sci. USA, 111, 15958-15963, doi:
https://doi.org/10.1073/pnas.1417334111.
CAS
Article
PubMed
Google Scholar
Mankin, A. S. (2008) Macrolide myths, Curr. Opin. Microbiol., 11, 414-421, doi:
https://doi.org/10.1016/j.mib.2008.08.003.
CAS
Article
PubMed
Google Scholar
Vazquez-Laslop, N., Thum, C., and Mankin, A. S. (2008) Molecular mechanism of drug-dependent ribosome stalling, Mol. Cell, 30, 190-202, doi:
https://doi.org/10.1016/j.molcel.2008.02.026.
CAS
Article
PubMed
Google Scholar
Tu, D., Blaha, G., Moore, P. B., and Steitz, T. A. (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance, Cell, 121, 257-270, doi:
https://doi.org/10.1016/j.cell.2005.02.005.
CAS
Article
PubMed
Google Scholar
Hansen, J. L., Ippolito, J. A., Ban, N., Nissen, P., Moore, P. B., and Steitz, T. A. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117-128, doi:
https://doi.org/10.1016/s1097-2765(02)00570-1.
CAS
Article
PubMed
Google Scholar
Gurel, G., Blaha, G., Steitz, T. A., and Moore, P. B. (2009) Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui, Antimicrob. Agents Chemother., 53, 5010-5014, doi:
https://doi.org/10.1128/AAC.00817-09.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nishimura, S., Matsunaga, S., Yoshida, M., Hirota, H., Yokoyama, S., and Fusetani, N. (2005) 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit, Bioorg. Med. Chem., 13, 449-454, doi:
https://doi.org/10.1016/j.bmc.2004.10.012.
CAS
Article
PubMed
Google Scholar
Lintner, N. G., McClure, K. F., Petersen, D., Londregan, A. T., Piotrowski, D. W., et al. (2017) Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain, PLoS Biol., 15, e2001882, doi:
https://doi.org/10.1371/journal.pbio.2001882.
CAS
Article
PubMed
PubMed Central
Google Scholar
Liaud, N., Horlbeck, M. A., Gilbert, L. A., Gjoni, K., Weissman, J. S., and Cate, J. H. D. (2019) Cellular response to small molecules that selectively stall protein synthesis by the ribosome, PLoS Genet., 15, e1008057, doi:
https://doi.org/10.1371/journal.pgen.1008057.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li, W., Ward, F. R., McClure, K. F., Chang, S. T., Montabana, E., Liras, S., Dullea, R. G., and Cate, J. H. D. (2019) Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule, Nat. Struct. Mol. Biol., 26, 501-509, doi:
https://doi.org/10.1038/s41594-019-0236-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Osterman, I. A., Wieland, M., Maviza, T. P., Lashkevich, K. A., Lukianov, D. A., et al. (2020) Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel, Nat. Chem. Biol., 16, 1071-1077, doi:
https://doi.org/10.1038/s41589-020-0578-x.
CAS
Article
PubMed
Google Scholar
Mortison, J. D., Schenone, M., Myers, J. A., Zhang, Z., Chen, L., et al. (2018) Tetracyclines modify translation by targeting key human rRNA substructures, Cell Chem. Biol., 25, 1506-1518.e13, doi:
https://doi.org/10.1016/j.chembiol.2018.09.010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu, C. C., Peterson, A., Zinshteyn, B., Regot, S., and Green, R. (2020) Ribosome collisions trigger general stress responses to regulate cell fate, Cell, 182, 404-416 e414, doi:
https://doi.org/10.1016/j.cell.2020.06.006.
CAS
Article
PubMed
Google Scholar
Jenner, L., Starosta, A. L., Terry, D. S., Mikolajka, A., Filonava, L., et al. (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis, Proc. Natl. Acad. Sci. USA, 110, 3812-3816, doi:
https://doi.org/10.1073/pnas.1216691110.
Article
PubMed
Google Scholar
Solis, G. M., Kardakaris, R., Valentine, E. R., Bar-Peled, L., Chen, A. L., et al. (2018) Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms, eLife, 7, doi:
https://doi.org/10.7554/eLife.40314.
Article
Google Scholar
Garrido-Mesa, N., Zarzuelo, A., and Galvez, J. (2013) Minocycline: far beyond an antibiotic, Br. J. Pharmacol., 169, 337-352, doi:
https://doi.org/10.1111/bph.12139.
CAS
Article
PubMed
PubMed Central
Google Scholar
Obrig, T. G., Culp, W. J., McKeehan, W. L., and Hardesty, B. (1971) The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes, J. Biol. Chem., 246, 174-181.
CAS
PubMed
Google Scholar
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S., and Ban, N. (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6, Science, 334, 941-948, doi:
https://doi.org/10.1126/science.1211204.
CAS
Article
PubMed
Google Scholar
Dmitriev, S. E., Pisarev, A. V., Rubtsova, M. P., Dunaevsky, Y. E., and Shatsky, I. N. (2003) Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting, FEBS Lett., 533, 99-104, doi:
https://doi.org/10.1016/s0014-5793(02)03776-6.
CAS
Article
PubMed
Google Scholar
Budkevich, T., Giesebrecht, J., Altman, R. B., Munro, J. B., Mielke, T., Nierhaus, K. H., Blanchard, S. C., and Spahn, C. M. (2011) Structure and dynamics of the mammalian ribosomal pretranslocation complex, Mol. Cell, 44, 214-224, doi:
https://doi.org/10.1016/j.molcel.2011.07.040.
CAS
Article
PubMed
PubMed Central
Google Scholar
Myasnikov, A. G., Kundhavai Natchiar, S., Nebout, M., Hazemann, I., Imbert, V., Khatter, H., Peyron, J. F., and Klaholz, B. P. (2016) Structure-function insights reveal the human ribosome as a cancer target for antibiotics, Nat. Commun., 7, 12856, doi:
https://doi.org/10.1038/ncomms12856.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pestova, T. V., and Hellen, C. U. (2003) Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA, Gen. Dev., 17, 181-186, doi:
https://doi.org/10.1101/gad.1040803.
CAS
Article
Google Scholar
Iwasaki, S., and Ingolia, N. T. (2017) The growing toolbox for protein synthesis studies, Trends Biochem. Sci., 42, 612-624, doi:
https://doi.org/10.1016/j.tibs.2017.05.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Park, Y., Koga, Y., Su, C., Waterbury, A. L., Johnny, C. L., and Liau, B. B. (2019) Versatile synthetic route to cycloheximide and analogues that potently inhibit translation elongation, Angew. Chem. Int. Ed. Engl., 58, 5387-5391, doi:
https://doi.org/10.1002/anie.201901386.
CAS
Article
PubMed
Google Scholar
Landsman, D., Srikantha, T., and Bustin, M. (1988) Single copy gene for the chicken non-histone chromosomal protein HMG-17, J. Biol. Chem., 263, 3917-3923.
CAS
PubMed
Google Scholar
Zhang, D., Yi, W., Ge, H., Zhang, Z., and Wu, B. (2019) Bioactive streptoglutarimides A-J from the marine-derived Streptomyces sp. ZZ741, J. Nat. Prod., 82, 2800-2808, doi:
https://doi.org/10.1021/acs.jnatprod.9b00481.
CAS
Article
PubMed
Google Scholar
Sugawara, K., Nishiyama, Y., Toda, S., Komiyama, N., Hatori, M., Moriyama, T., Sawada, Y., Kamei, H., Konishi, M., and Oki, T. (1992) Lactimidomycin, a new glutarimide group antibiotic. Production, isolation, structure and biological activity, J. Antibiot. (Tokyo), 45, 1433-1441, doi:
https://doi.org/10.7164/antibiotics.45.1433.
CAS
Article
Google Scholar
Lee, S., Liu, B., Lee, S., Huang, S. X., Shen, B., and Qian, S. B. (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution, Proc. Natl. Acad. Sci. USA, 109, E2424-2432, doi:
https://doi.org/10.1073/pnas.1207846109.
Article
PubMed
Google Scholar
Pellegrino, S., Meyer, M., Konst, Z. A., Holm, M., Voora, V. K., et al. (2019) Understanding the role of intermolecular interactions between lissoclimides and the eukaryotic ribosome, Nucleic Acids Res., 47, 3223-3232, doi:
https://doi.org/10.1093/nar/gkz053.
CAS
Article
PubMed
PubMed Central
Google Scholar
Konst, Z. A., Szklarski, A. R., Pellegrino, S., Michalak, S. E., Meyer, M., et al. (2017) Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides, Nat. Chem., 9, 1140-1149, doi:
https://doi.org/10.1038/nchem.2800.
CAS
Article
PubMed
PubMed Central
Google Scholar
Robert, F., Gao, H. Q., Donia, M., Merrick, W. C., Hamann, M. T., and Pelletier, J. (2006) Chlorolissoclimides: new inhibitors of eukaryotic protein synthesis, RNA, 12, 717-725, doi:
https://doi.org/10.1261/rna.2346806.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee, K. H., Nishimura, S., Matsunaga, S., Fusetani, N., Horinouchi, S., and Yoshida, M. (2005) Inhibition of protein synthesis and activation of stress-activated protein kinases by onnamide A and theopederin B, antitumor marine natural products, Cancer Sci., 96, 357-364, doi:
https://doi.org/10.1111/j.1349-7006.2005.00055.x.
CAS
Article
PubMed
Google Scholar
Brega, A., Falaschi, A., De Carli, L., and Pavan, M. (1968) Studies on the mechanism of action of pederine, J. Cell Biol., 36, 485-496, doi:
https://doi.org/10.1083/jcb.36.3.485.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jacobs-Lorena, M., Brega, A., and Baglioni, C. (1971) Inhibition of protein synthesis in reticulocytes by antibiotics. V. Mechanism of action of pederine, an inhibitor of initiation and elongation, Biochim. Biophys. Acta, 240, 263-272.
CAS
Article
Google Scholar
Schroeder, S. J., Blaha, G., Tirado-Rives, J., Steitz, T. A., and Moore, P. B. (2007) The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole, J. Mol. Biol., 367, 1471-1479, doi:
https://doi.org/10.1016/j.jmb.2007.01.081.
CAS
Article
PubMed
PubMed Central
Google Scholar
Taylor, R. E. (2008) Tedanolide and the evolution of polyketide inhibitors of eukaryotic protein synthesis, Nat. Prod. Rep., 25, 854-861, doi:
https://doi.org/10.1039/b805700c.
CAS
Article
PubMed
Google Scholar
Hines, J., Roy, M., Cheng, H., Agapakis, C. M., Taylor, R., and Crews, C. M. (2006) Myriaporone 3/4 structure--activity relationship studies define a pharmacophore targeting eukaryotic protein synthesis, Mol. Biosyst., 2, 371-379, doi:
https://doi.org/10.1039/b602936a.
CAS
Article
PubMed
PubMed Central
Google Scholar
Muthukumar, Y., Roy, M., Raja, A., Taylor, R. E., and Sasse, F. (2013) The marine polyketide myriaporone 3/4 stalls translation by targeting the elongation phase, Chembiochem, 14, 260-264, doi:
https://doi.org/10.1002/cbic.201200522.
CAS
Article
PubMed
Google Scholar
Prokhorova, I. V., Akulich, K. A., Makeeva, D. S., Osterman, I. A., Skvortsov, D. A., et al. (2016) Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome, Sci. Rep., 6, 27720, doi:
https://doi.org/10.1038/srep27720.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong, W., Bai, X. C., Brown, A., Fernandez, I. S., Hanssen, E., Condron, M., Tan, Y. H., Baum, J., and Scheres, S. H. (2014) Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine, eLife, 3, doi:
https://doi.org/10.7554/eLife.03080.
Article
Google Scholar
Chang, S., and Wasmuth, J. J. (1983) Construction and characterization of Chinese hamster cell EmtA EmtB double mutants, Mol. Cell. Biol., 3, 761-772, doi:
https://doi.org/10.1128/mcb.3.5.761.
CAS
Article
PubMed
PubMed Central
Google Scholar
Grant, P., Sanchez, L., and Jimenez, A. (1974) Cryptopleurine resistance: genetic locus for a 40S ribosomal component in Saccharomyces cerevisiae, J. Bacteriol., 120, 1308-1314, doi:
https://doi.org/10.1128/JB.120.3.1308-1314.1974.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gupta, R. S., and Siminovitch, L. (1977) Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebine, and tubulosine, Biochemistry, 16, 3209-3214, doi:
https://doi.org/10.1021/bi00633a026.
CAS
Article
PubMed
Google Scholar
Bucher, K., and Skogerson, L. (1976) Cryptopleurine--an inhibitor of translocation, Biochemistry, 15, 4755-4759, doi:
https://doi.org/10.1021/bi00667a001.
CAS
Article
PubMed
Google Scholar
Carrasco, L., Jimenez, A., and Vazquez, D. (1976) Specific inhibition of translocation by tubulosine in eukaryotic polysomes, Eur. J. Biochem., 64, 1-5, doi:
https://doi.org/10.1111/j.1432-1033.1976.tb10268.x.
CAS
Article
PubMed
Google Scholar
Wang, Y., Wong, H. C., Gullen, E. A., Lam, W., Yang, X., Shi, Q., Lee, K. H., and Cheng, Y. C. (2012) Cryptopleurine analogs with modification of e ring exhibit different mechanism to rac-cryptopleurine and tylophorine, PLoS One, 7, e51138, doi:
https://doi.org/10.1371/journal.pone.0051138.
CAS
Article
PubMed
PubMed Central
Google Scholar
Donaldson, G. R., Atkinson, M. R., and Murray, A. W. (1968) Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine, Biochem. Biophys. Res. Commun., 31, 104-109, doi:
https://doi.org/10.1016/0006-291x(68)90037-5.
CAS
Article
PubMed
Google Scholar
Polikanov, Y. S., Osterman, I. A., Szal, T., Tashlitsky, V. N., Serebryakova, M. V., et al. (2014) Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome, Mol. Cell, 56, 531-540, doi:
https://doi.org/10.1016/j.molcel.2014.09.020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit, Cell, 103, 1143-1154, doi:
https://doi.org/10.1016/s0092-8674(00)00216-6.
CAS
Article
PubMed
Google Scholar
Dinos, G., Wilson, D. N., Teraoka, Y., Szaflarski, W., Fucini, P., Kalpaxis, D., and Nierhaus, K. H. (2004) Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding, Mol. Cell, 13, 113-124, doi:
https://doi.org/10.1016/s1097-2765(04)00002-4.
CAS
Article
PubMed
Google Scholar
Borovinskaya, M. A., Shoji, S., Fredrick, K., and Cate, J. H. (2008) Structural basis for hygromycin B inhibition of protein biosynthesis, RNA, 14, 1590-1599, doi:
https://doi.org/10.1261/rna.1076908.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez, A., Jimenez, A., Vazquez, D., Davies, J. E., and Schindler, D. (1978) Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes, Biochim. Biophys. Acta, 521, 459-469, doi:
https://doi.org/10.1016/0005-2787(78)90287-3.
CAS
Article
PubMed
Google Scholar
Misumi, M., Nishimura, T., Komai, T., and Tanaka, N. (1978) Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation, Biochem. Biophys. Res. Commun., 84, 358-365, doi:
https://doi.org/10.1016/0006-291x(78)90178-x.
CAS
Article
PubMed
Google Scholar
Cabanas, M. J., Vazquez, D., and Modolell, J. (1978) Inhibition of ribosomal translocation by aminoglycoside antibiotics, Biochem. Biophys. Res. Commun., 83, 991-997, doi:
https://doi.org/10.1016/0006-291x(78)91493-6.
CAS
Article
PubMed
Google Scholar
Borovinskaya, M. A., Pai, R. D., Zhang, W., Schuwirth, B. S., Holton, J. M., et al. (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling, Nat. Struct. Mol. Biol., 14, 727-732, doi:
https://doi.org/10.1038/nsmb1271.
CAS
Article
PubMed
Google Scholar
Prokhorova, I., Altman, R. B., Djumagulov, M., Shrestha, J. P., Urzhumtsev, A., et al. (2017) Aminoglycoside interactions and impacts on the eukaryotic ribosome, Proc. Natl. Acad. Sci. USA, 114, E10899-E10908, doi:
https://doi.org/10.1073/pnas.1715501114.
CAS
Article
PubMed
Google Scholar
Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016) Aminoglycosides: an overview, Cold Spring Harb. Perspect. Med., 6, doi:
https://doi.org/10.1101/cshperspect.a027029.
Article
Google Scholar
Wilhelm, J. M., Pettitt, S. E., and Jessop, J. J. (1978) Aminoglycoside antibiotics and eukaryotic protein synthesis: structure--function relationships in the stimulation of misreading with a wheat embryo system, Biochemistry, 17, 1143-1149, doi:
https://doi.org/10.1021/bi00600a001.
CAS
Article
PubMed
Google Scholar
Howard, M., Frizzell, R. A., and Bedwell, D. M. (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations, Nat. Med., 2, 467-469, doi:
https://doi.org/10.1038/nm0496-467.
CAS
Article
PubMed
Google Scholar
Kandasamy, J., Atia-Glikin, D., Shulman, E., Shapira, K., Shavit, M., Belakhov, V., and Baasov, T. (2012) Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic diseases caused by nonsense mutations, J. Med. Chem., 55, 10630-10643, doi:
https://doi.org/10.1021/jm3012992.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wangen, J. R., and Green, R. (2020) Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides, eLife, 9, doi:
https://doi.org/10.7554/eLife.52611.
Article
Google Scholar
Kuang, L., Hashimoto, K., Huang, E. J., Gentry, M. S., and Zhu, H. (2020) Frontotemporal dementia non-sense mutation of progranulin rescued by aminoglycosides, Hum. Mol. Genet., 29, 624-634, doi:
https://doi.org/10.1093/hmg/ddz280.
CAS
Article
PubMed
Google Scholar
Sabbavarapu, N. M., Shavit, M., Degani, Y., Smolkin, B., Belakhov, V., and Baasov, T. (2016) Design of novel aminoglycoside derivatives with enhanced suppression of diseases-causing nonsense mutations, ACS Med. Chem. Lett., 7, 418-423, doi:
https://doi.org/10.1021/acsmedchemlett.6b00006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shalev, M., and Baasov, T. (2014) When proteins start to make sense: fine-tuning aminoglycosides for PTC suppression therapy, Medchemcomm, 5, 1092-1105, doi:
https://doi.org/10.1039/C4MD00081A.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bidou, L., Bugaud, O., Belakhov, V., Baasov, T., and Namy, O. (2017) Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells, RNA Biol., 14, 378-388, doi:
https://doi.org/10.1080/15476286.2017.1285480.
Article
PubMed
PubMed Central
Google Scholar
Mattis, V. B., Rai, R., Wang, J., Chang, C. W., Coady, T., and Lorson, C. L. (2006) Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts, Hum. Genet., 120, 589-601, doi:
https://doi.org/10.1007/s00439-006-0245-7.
CAS
Article
PubMed
Google Scholar
Baradaran-Heravi, A., Niesser, J., Balgi, A. D., Choi, K., Zimmerman, C., et al. (2017) Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity, Proc. Natl. Acad. Sci. USA, 114, 3479-3484, doi:
https://doi.org/10.1073/pnas.1620982114.
CAS
Article
PubMed
Google Scholar
Fan-Minogue, H., and Bedwell, D. M. (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity, RNA, 14, 148-157, doi:
https://doi.org/10.1261/rna.805208.
CAS
Article
PubMed
PubMed Central
Google Scholar
Recht, M. I., Douthwaite, S., and Puglisi, J. D. (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics, EMBO J., 18, 3133-3138, doi:
https://doi.org/10.1093/emboj/18.11.3133.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wargo, K. A., and Edwards, J. D. (2014) Aminoglycoside-induced nephrotoxicity, J. Pharm. Pract., 27, 573-577, doi:
https://doi.org/10.1177/0897190014546836.
Article
PubMed
Google Scholar
Nguyen, T., and Jeyakumar, A. (2019) Genetic susceptibility to aminoglycoside ototoxicity, Int. J. Pediatr. Otorhinolaryngol., 120, 15-19, doi:
https://doi.org/10.1016/j.ijporl.2019.02.002.
Article
PubMed
Google Scholar
Aviner, R. (2020) The science of puromycin: from studies of ribosome function to applications in biotechnology, Comput. Struct. Biotechnol. J., 18, 1074-1083, doi:
https://doi.org/10.1016/j.csbj.2020.04.014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fritsch, C., Herrmann, A., Nothnagel, M., Szafranski, K., Huse, K., et al. (2012) Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting, Genome Res., 22, 2208-2218, doi:
https://doi.org/10.1101/gr.139568.112.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hobson, B. D., Kong, L., Hartwick, E. W., Gonzalez Jr., R. L., and Sims, P. A. (2020) Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes, BioRxiv, doi:
https://doi.org/10.1101/2020.06.15.152488.
Enam, S. U., Zinshteyn, B., Goldman, D. H., Cassani, M., Livingston, N. M., Seydoux, G., and Green, R. (2020) Puromycin reactivity does not accurately localize translation at the subcellular level, BioRxiv, doi:
https://doi.org/10.1101/2020.06.22.165217.
Wong, W., Bai, X. C., Sleebs, B. E., Triglia, T., Brown, A., et al. (2017) Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis, Nat. Microbiol., 2, 17031, doi:
https://doi.org/10.1038/nmicrobiol.2017.31.
Article
PubMed
PubMed Central
Google Scholar
Shi, W. W., Mak, A. N., Wong, K. B., and Shaw, P. C. (2016) Structures and ribosomal interaction of ribosome-inactivating proteins, Molecules, 21, 1588, doi:
https://doi.org/10.3390/molecules21111588.
CAS
Article
PubMed Central
Google Scholar
Olombrada, M., Lazaro-Gorines, R., Lopez-Rodriguez, J. C., Martinez-Del-Pozo, A., Onaderra, M., et al. (2017) Fungal ribotoxins: a review of potential biotechnological applications, Toxins, 9, 71, doi:
https://doi.org/10.3390/toxins9020071.
CAS
Article
PubMed Central
Google Scholar
Kozak, M., and Shatkin, A. J. (1978) Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine, J. Biol. Chem., 253, 6568-6577.
CAS
PubMed
Google Scholar
Vassilenko, K. S., Alekhina, O. M., Dmitriev, S. E., Shatsky, I. N., and Spirin, A. S. (2011) Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation, Nucleic Acids Res., 39, 5555-5567, doi:
https://doi.org/10.1093/nar/gkr147.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kozak, M. (2007) Some thoughts about translational regulation: forward and backward glances, J. Cell. Biochem., 102, 280-290, doi:
https://doi.org/10.1002/jcb.21464.
CAS
Article
PubMed
Google Scholar
Contreras, A., and Carrasco, L. (1979) Selective inhibition of protein synthesis in virus-infected mammalian cells, J. Virol., 29, 114-122, doi:
https://doi.org/10.1128/JVI.29.1.114-122.1979.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baxter, R., Knell, V. C., Somerville, H. J., Swain, H. M., and Weeks, D. P. (1973) Effect of MDMP on protein synthesis in wheat and bacteria, Nat. New Biol., 243, 139-142, doi:
https://doi.org/10.1038/newbio243139a0.
CAS
Article
PubMed
Google Scholar
Mokas, S., Mills, J. R., Garreau, C., Fournier, M. J., Robert, F., Arya, P., Kaufman, R. J., Pelletier, J., and Mazroui, R. (2009) Uncoupling stress granule assembly and translation initiation inhibition, Mol. Biol. Cell, 20, 2673-2683, doi:
https://doi.org/10.1091/mbc.E08-10-1061.
CAS
Article
PubMed
PubMed Central
Google Scholar
Weeks, D. P., and Baxter, R. (1972) Specific inhibition of peptide-chain initiation by 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide, Biochemistry, 11, 3060-3064, doi:
https://doi.org/10.1021/bi00766a018.
CAS
Article
PubMed
Google Scholar
Baxter, R., and McGowan, J. E. (1976) MDMP action: degradative effects on polyribosomes from wheat roots and the inhibition of protein initiation, J. Exp. Bot., 27, 525-531, doi:
https://doi.org/10.1093/jxb/27.3.525.
CAS
Article
Google Scholar
Gritz, L. R., Mitlin, J. A., Cannon, M., Littlewood, B., Carter, C. J., and Davies, J. E. (1982) Ribosome structure, maturation of ribosomal RNA and drug sensitivity in temperature-sensitive mutants of Saccharomyces cerevisiae, Mol. Gen. Genet., 188, 384-391, doi:
https://doi.org/10.1007/BF00330038.
CAS
Article
PubMed
Google Scholar
Pesce, E., Miluzio, A., Turcano, L., Minici, C., Cirino, D., et al. (2020) Discovery and preliminary characterization of translational modulators that impair the binding of eIF6 to 60S ribosomal subunits, Cells, 9, doi:
https://doi.org/10.3390/cells9010172.
Article
Google Scholar
Brina, D., Miluzio, A., Ricciardi, S., and Biffo, S. (2015) eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression, Biochim. Biophys. Acta, 1849, 830-835, doi:
https://doi.org/10.1016/j.bbagrm.2014.09.010.
CAS
Article
PubMed
Google Scholar
Florin, T., Maracci, C., Graf, M., Karki, P., Klepacki, D., et al. (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome, Nat. Struct. Mol. Biol., 24, 752-757, doi:
https://doi.org/10.1038/nsmb.3439.
CAS
Article
PubMed
PubMed Central
Google Scholar
Colson, G., Rabault, B., Lavelle, F., and Zerial, A. (1992) Mode of action of the antitumor compound girodazole (RP 49532A, NSC 627434), Biochem. Pharmacol., 43, 1717-1723, doi:
https://doi.org/10.1016/0006-2952(92)90701-j.
CAS
Article
PubMed
Google Scholar
Lavelle, F., Zerial, A., Fizames, C., Rabault, B., and Curaudeau, A. (1991) Antitumor activity and mechanism of action of the marine compound girodazole, Invest. New Drugs, 9, 233-244, doi:
https://doi.org/10.1007/bf00176976.
CAS
Article
PubMed
Google Scholar
Catimel, G., Coquard, R., Guastalla, J. P., Merrouche, Y., Le Bail, N., Alakl, M. K., Dumortier, A., Foy, M., and Clavel, M. (1995) Phase I study of RP 49532A, a new protein-synthesis inhibitor, in patients with advanced refractory solid tumors, Cancer Chemother. Pharmacol., 35, 246-248, doi:
https://doi.org/10.1007/BF00686555.
CAS
Article
PubMed
Google Scholar
Bordeira-Carrico, R., Pego, A. P., Santos, M., and Oliveira, C. (2012) Cancer syndromes and therapy by stop-codon readthrough, Trends Mol. Med., 18, 667-678, doi:
https://doi.org/10.1016/j.molmed.2012.09.004.
CAS
Article
PubMed
Google Scholar
Mort, M., Ivanov, D., Cooper, D. N., and Chuzhanova, N. A. (2008) A meta-analysis of nonsense mutations causing human genetic disease, Hum. Mut., 29, 1037-1047, doi:
https://doi.org/10.1002/humu.20763.
CAS
Article
PubMed
Google Scholar
Keeling, K. M., Xue, X., Gunn, G., and Bedwell, D. M. (2014) Therapeutics based on stop codon readthrough, Annu. Rev. Genomics Hum. Genet., 15, 371-394, doi:
https://doi.org/10.1146/annurev-genom-091212-153527.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee, H. L., and Dougherty, J. P. (2012) Pharmaceutical therapies to recode nonsense mutations in inherited diseases, Pharmacol. Ther., 136, 227-266, doi:
https://doi.org/10.1016/j.pharmthera.2012.07.007.
CAS
Article
PubMed
Google Scholar
Ng, M. Y., Zhang, H., Weil, A., Singh, V., Jamiolkowski, R., et al. (2018) New in vitro assay measuring direct interaction of nonsense suppressors with the eukaryotic protein synthesis machinery, ACS Med. Chem. Lett., 9, 1285-1291, doi:
https://doi.org/10.1021/acsmedchemlett.8b00472.
CAS
Article
PubMed
PubMed Central
Google Scholar
Floquet, C., Rousset, J. P., and Bidou, L. (2011) Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells, PLoS One, 6, e24125, doi:
https://doi.org/10.1371/journal.pone.0024125.
CAS
Article
PubMed
PubMed Central
Google Scholar
Prayle, A., and Smyth, A. R. (2010) Aminoglycoside use in cystic fibrosis: therapeutic strategies and toxicity, Curr. Opin. Pulm. Med., 16, 604-610, doi:
https://doi.org/10.1097/MCP.0b013e32833eebfd.
CAS
Article
PubMed
Google Scholar
Zingman, L. V., Park, S., Olson, T. M., Alekseev, A. E., and Terzic, A. (2007) Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy, Clin. Pharmacol. Ther., 81, 99-103, doi:
https://doi.org/10.1038/sj.clpt.6100012.
CAS
Article
PubMed
Google Scholar
Lentini, L., Melfi, R., Di Leonardo, A., Spinello, A., Barone, G., Pace, A., Palumbo Piccionello, A., and Pibiri, I. (2014) Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay, Mol. Pharm., 11, 653-664, doi:
https://doi.org/10.1021/mp400230s.
CAS
Article
PubMed
PubMed Central
Google Scholar
Konstan, M. W., VanDevanter, D. R., Rowe, S. M., Wilschanski, M., Kerem, E., et al. (2020) Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: the international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF), J. Cyst. Fibros., 19, 595-601, doi:
https://doi.org/10.1016/j.jcf.2020.01.007.
CAS
Article
PubMed
Google Scholar
Zainal Abidin, N., Haq, I. J., Gardner, A. I., and Brodlie, M. (2017) Ataluren in cystic fibrosis: development, clinical studies and where are we now? Exp. Opin. Pharmacother., 18, 1363-1371, doi:
https://doi.org/10.1080/14656566.2017.1359255.
CAS
Article
Google Scholar
Auld, D. S., Thorne, N., Maguire, W. F., and Inglese, J. (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression, Proc. Natl. Acad. Sci. USA, 106, 3585-3590, doi:
https://doi.org/10.1073/pnas.0813345106.
Article
PubMed
Google Scholar
Altamura, E., Borgatti, M., Finotti, A., Gasparello, J., Gambari, R., Spinelli, M., Castaldo, R., and Altamura, N. (2016) Chemical-induced read-through at premature termination codons determined by a rapid dual-fluorescence system based on S. cerevisiae, PLoS One, 11, e0154260, doi:
https://doi.org/10.1371/journal.pone.0154260.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamada, K., Omura, N., Taguchi, A., Baradaran-Heravi, A., Kotake, M., et al. (2019) New negamycin-based potent readthrough derivative effective against TGA-type nonsense mutations, ACS Med. Chem. Lett., 10, 1450-1456, doi:
https://doi.org/10.1021/acsmedchemlett.9b00273.
CAS
Article
PubMed
PubMed Central
Google Scholar
Arakawa, M., Shiozuka, M., Nakayama, Y., Hara, T., Hamada, M., et al. (2003) Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice, J. Biochem., 134, 751-758, doi:
https://doi.org/10.1093/jb/mvg203.
CAS
Article
PubMed
Google Scholar
Olivier, N. B., Altman, R. B., Noeske, J., Basarab, G. S., Code, E., et al. (2014) Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome, Proc. Natl. Acad. Sci. USA, 111, 16274-16279, doi:
https://doi.org/10.1073/pnas.1414401111.
CAS
Article
PubMed
Google Scholar
Ferguson, M. W., Gerak, C. A. N., Chow, C. C. T., Rastelli, E. J., Elmore, K. E., et al. (2019) The antimalarial drug mefloquine enhances TP53 premature termination codon readthrough by aminoglycoside G418, PLoS One, 14, e0216423, doi:
https://doi.org/10.1371/journal.pone.0216423.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baradaran-Heravi, A., Balgi, A. D., Zimmerman, C., Choi, K., Shidmoossavee, F. S., et al. (2016) Novel small molecules potentiate premature termination codon readthrough by aminoglycosides, Nucleic Acids Res., 44, 6583-6598, doi:
https://doi.org/10.1093/nar/gkw638.
Article
PubMed
PubMed Central
Google Scholar
Nurenberg-Goloub, E., and Tampe, R. (2019) Ribosome recycling in mRNA translation, quality control, and homeostasis, Biol. Chem., 401, 47-61, doi:
https://doi.org/10.1515/hsz-2019-0279.
CAS
Article
PubMed
Google Scholar
Buskirk, A. R., and Green, R. (2017) Ribosome pausing, arrest and rescue in bacteria and eukaryotes, Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 20160183, doi:
https://doi.org/10.1098/rstb.2016.0183.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hirokawa, G., Kiel, M. C., Muto, A., Selmer, M., Raj, V. S., Liljas, A., Igarashi, K., Kaji, H., and Kaji, A. (2002) Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic, EMBO J., 21, 2272-2281, doi:
https://doi.org/10.1093/emboj/21.9.2272.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurata, S., Shen, B., Liu, J. O., Takeuchi, N., Kaji, A., and Kaji, H. (2013) Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors, Nucleic Acids Res., 41, 264-276, doi:
https://doi.org/10.1093/nar/gks958.
CAS
Article
PubMed
Google Scholar
Kurata, S., Nielsen, K. H., Mitchell, S. F., Lorsch, J. R., Kaji, A., and Kaji, H. (2010) Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP, Proc. Natl. Acad. Sci. USA, 107, 10854-10859, doi:
https://doi.org/10.1073/pnas.1006247107.
CAS
Article
PubMed
Google Scholar
Borg, A., Pavlov, M., and Ehrenberg, M. (2016) Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome, Nucleic Acids Res., 44, 3264-3275, doi:
https://doi.org/10.1093/nar/gkw178.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanchez-Murcia, P. A., Cortes-Cabrera, A., and Gago, F. (2017) Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B, J. Comput. Aided Mol. Des., 31, 915-928, doi:
https://doi.org/10.1007/s10822-017-0066-x.
CAS
Article
PubMed
Google Scholar
Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T., and Taunton, J. (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex, eLife, 4, doi:
https://doi.org/10.7554/eLife.10222.
Article
Google Scholar
Lee, J., Currano, J. N., Carroll, P. J., and Joullie, M. M. (2012) Didemnins, tamandarins and related natural products, Nat. Prod. Rep., 29, 404-424, doi:
https://doi.org/10.1039/c2np00065b.
CAS
Article
PubMed
Google Scholar
SirDeshpande, B. V., and Toogood, P. L. (1995) Mechanism of protein synthesis inhibition by didemnin B in vitro, Biochemistry, 34, 9177-9184, doi:
https://doi.org/10.1021/bi00028a030.
CAS
Article
PubMed
Google Scholar
Shao, S., Murray, J., Brown, A., Taunton, J., Ramakrishnan, V., and Hegde, R. S. (2016) Decoding mammalian ribosome-mRNA states by translational GTPase complexes, Cell, 167, 1229-1240 e1215, doi:
https://doi.org/10.1016/j.cell.2016.10.046.
CAS
Article
PubMed
PubMed Central
Google Scholar
Losada, A., Munoz-Alonso, M. J., Garcia, C., Sanchez-Murcia, P. A., Martinez-Leal, J. F., et al. (2016) Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin, Sci. Rep., 6, 35100, doi:
https://doi.org/10.1038/srep35100.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adrio, J., Cuevas, C., Manzanares, I., and Joullie, M. M. (2007) Total synthesis and biological evaluation of tamandarin B analogues, J. Org. Chem., 72, 5129-5138, doi:
https://doi.org/10.1021/jo070412r.
CAS
Article
PubMed
Google Scholar
Lindqvist, L., Robert, F., Merrick, W., Kakeya, H., Fraser, C., Osada, H., and Pelletier, J. (2010) Inhibition of translation by cytotrienin A--a member of the ansamycin family, RNA, 16, 2404-2413, doi:
https://doi.org/10.1261/rna.2307710.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamada, Y., Tashiro, E., Taketani, S., Imoto, M., and Kataoka, T. (2011) Mycotrienin II, a translation inhibitor that prevents ICAM-1 expression induced by pro-inflammatory cytokines, J. Antibiot. (Tokyo), 64, 361-366, doi:
https://doi.org/10.1038/ja.2011.23.
CAS
Article
Google Scholar
Krastel, P., Roggo, S., Schirle, M., Ross, N. T., Perruccio, F., et al. (2015) Nannocystin A: an elongation factor 1 inhibitor from Myxobacteria with differential anti-cancer properties, Angew. Chem. Int. Ed. Engl., 54, 10149-10154, doi:
https://doi.org/10.1002/anie.201505069.
CAS
Article
PubMed
Google Scholar
Justice, M. C., Hsu, M. J., Tse, B., Ku, T., Balkovec, J., Schmatz, D., and Nielsen, J. (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis, J. Biol. Chem., 273, 3148-3151, doi:
https://doi.org/10.1074/jbc.273.6.3148.
CAS
Article
PubMed
Google Scholar
Dominguez, J. M., Kelly, V. A., Kinsman, O. S., Marriott, M. S., Gomez de las Heras, F., and Martin, J. J. (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts, Antimicrob. Agents Chemother., 42, 2274-2278, doi:
https://doi.org/10.1128/AAC.42.9.2274.
CAS
Article
PubMed
PubMed Central
Google Scholar
Basilio, A., Justice, M., Harris, G., Bills, G., Collado, J., et al. (2006) The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides, Bioorg. Med. Chem., 14, 560-566, doi:
https://doi.org/10.1016/j.bmc.2005.08.046.
CAS
Article
PubMed
Google Scholar
Herreros, E., Almela, M. J., Lozano, S., Gomez de las Heras, F., and Gargallo-Viola, D. (2001) Antifungal activities and cytotoxicity studies of six new azasordarins, Antimicrob. Agents Chemother., 45, 3132-3139, doi:
https://doi.org/10.1128/AAC.45.11.3132-3139.2001.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jorgensen, R., Ortiz, P. A., Carr-Schmid, A., Nissen, P., Kinzy, T. G., and Andersen, G. R. (2003) Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase, Nat. Struct. Biol., 10, 379-385, doi:
https://doi.org/10.1038/nsb923.
CAS
Article
PubMed
Google Scholar
Soe, R., Mosley, R. T., Justice, M., Nielsen-Kahn, J., Shastry, M., Merrill, A. R., and Andersen, G. R. (2007) Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2, J. Biol. Chem., 282, 657-666, doi:
https://doi.org/10.1074/jbc.M607830200.
CAS
Article
PubMed
Google Scholar
Spahn, C. M., Gomez-Lorenzo, M. G., Grassucci, R. A., Jorgensen, R., Andersen, G. R., et al. (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation, EMBO J., 23, 1008-1019, doi:
https://doi.org/10.1038/sj.emboj.7600102.
CAS
Article
PubMed
PubMed Central
Google Scholar
Malkin, M., and Lipmann, F. (1969) Fusidic acid: inhibition of factor T2 in reticulocyte protein synthesis, Science, 164, 71-72, doi:
https://doi.org/10.1126/science.164.3875.71.
CAS
Article
PubMed
Google Scholar
Botet, J., Rodriguez-Mateos, M., Ballesta, J. P., Revuelta, J. L., and Remacha, M. (2008) A chemical genomic screen in Saccharomyces cerevisiae reveals a role for diphthamidation of translation elongation factor 2 in inhibition of protein synthesis by sordarin, Antimicrob. Agents Chemother., 52, 1623-1629, doi:
https://doi.org/10.1128/AAC.01603-07.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yates, S. P., Jorgensen, R., Andersen, G. R., and Merrill, A. R. (2006) Stealth and mimicry by deadly bacterial toxins, Trends Biochem. Sci., 31, 123-133, doi:
https://doi.org/10.1016/j.tibs.2005.12.007.
CAS
Article
PubMed
Google Scholar
Stickel, S. A., Gomes, N. P., Frederick, B., Raben, D., and Su, T. T. (2015) Bouvardin is a radiation modulator with a novel mechanism of action, Radiat. Res., 184, 392-403, doi:
https://doi.org/10.1667/RR14068.1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zalacain, M., Zaera, E., Vazquez, D., and Jimenez, A. (1982) The mode of action of the antitumor drug bouvardin, an inhibitor of protein synthesis in eukaryotic cells, FEBS Lett., 148, 95-97, doi:
https://doi.org/10.1016/0014-5793(82)81250-7.
CAS
Article
PubMed
Google Scholar
Rambelli, F., Brigotti, M., Zamboni, M., Denaro, M., Montanaro, L., and Sperti, S. (1989) Effect of the antibiotic purpuromycin on cell-free protein-synthesizing systems, Biochem. J., 259, 307-310, doi:
https://doi.org/10.1042/bj2590307.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baragana, B., Hallyburton, I., Lee, M. C., Norcross, N. R., Grimaldi, R., et al. (2015) A novel multiple-stage antimalarial agent that inhibits protein synthesis, Nature, 522, 315-320, doi:
https://doi.org/10.1038/nature14451.
CAS
Article
PubMed
PubMed Central
Google Scholar
Turpaev, K. T. (2018) Translation factor eIF5A, modification with hypusine and role in regulation of gene expression. eIF5A as a target for pharmacological interventions, Biochemistry (Moscow), 83, 863-873, doi:
https://doi.org/10.1134/S0006297918080011.
CAS
Article
Google Scholar
Dong, Z., and Zhang, J. T. (2003) EIF3 p170, a mediator of mimosine effect on protein synthesis and cell cycle progression, Mol. Biol. Cell, 14, 3942-3951, doi:
https://doi.org/10.1091/mbc.e02-12-0784.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moerke, N. J., Aktas, H., Chen, H., Cantel, S., Reibarkh, M. Y., et al. (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G, Cell, 128, 257-267, doi:
https://doi.org/10.1016/j.cell.2006.11.046.
CAS
Article
PubMed
Google Scholar
Sekiyama, N., Arthanari, H., Papadopoulos, E., Rodriguez-Mias, R. A., Wagner, G., and Leger-Abraham, M. (2015) Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1, Proc. Natl. Acad. Sci. USA, 112, E4036-E4045, doi:
https://doi.org/10.1073/pnas.1512118112.
CAS
Article
PubMed
Google Scholar
Papadopoulos, E., Jenni, S., Kabha, E., Takrouri, K. J., Yi, T., et al. (2014) Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G, Proc. Natl. Acad. Sci. USA, 111, E3187-3195, doi:
https://doi.org/10.1073/pnas.1410250111.
CAS
Article
PubMed
Google Scholar
Shatsky, I. N., Dmitriev, S. E., Andreev, D. E., and Terenin, I. M. (2014) Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes, Crit. Rev. Biochem. Mol. Biol., 49, 164-177, doi:
https://doi.org/10.3109/10409238.2014.887051.
CAS
Article
PubMed
Google Scholar
Cencic, R., Hall, D. R., Robert, F., Du, Y., Min, J., et al. (2011) Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F, Proc. Natl. Acad. Sci. USA, 108, 1046-1051, doi:
https://doi.org/10.1073/pnas.1011477108.
Article
PubMed
Google Scholar
Cencic, R., Desforges, M., Hall, D. R., Kozakov, D., Du, Y., et al. (2011) Blocking eIF4E-eIF4G interaction as a strategy to impair coronavirus replication, J. Virol., 85, 6381-6389, doi:
https://doi.org/10.1128/JVI.00078-11.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao, J., He, L., Lin, G., Hu, C., Dong, R., et al. (2014) Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1alpha, Biochem. Pharmacol., 89, 20-30, doi:
https://doi.org/10.1016/j.bcp.2013.12.002.
CAS
Article
PubMed
Google Scholar
Huang, C. T., Hsieh, C. H., Oyang, Y. J., Huang, H. C., and Juan, H. F. (2018) A large-scale gene expression intensity-based similarity metric ford repositioning, iScience, 7, 40-52, doi:
https://doi.org/10.1016/j.isci.2018.08.017.
CAS
Article
PubMed
PubMed Central
Google Scholar
Perne, A., Muellner, M. K., Steinrueck, M., Craig-Mueller, N., Mayerhofer, J., et al. (2009) Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis, PLoS One, 4, e8292, doi:
https://doi.org/10.1371/journal.pone.0008292.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hossan, M. S., Chan, Z. Y., Collins, H. M., Shipton, F. N., Butler, M. S., et al. (2019) Cardiac glycoside cerberin exerts anticancer activity through PI3K/AKT/mTOR signal transduction inhibition, Cancer Lett., 453, 57-73, doi:
https://doi.org/10.1016/j.canlet.2019.03.034.
CAS
Article
PubMed
Google Scholar
Howard, C. M., Estrada, M., Terrero, D., Tiwari, A. K., and Raman, D. (2020) Identification of cardiac glycosides as novel inhibitors of eIF4A1-mediated translation in triple-negative breast cancer cells, Cancers, 12, doi:
https://doi.org/10.3390/cancers12082169.
Article
Google Scholar
Kentsis, A., Topisirovic, I., Culjkovic, B., Shao, L., and Borden, K. L. (2004) Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap, Proc. Natl. Acad. Sci. USA, 101, 18105-18110, doi:
https://doi.org/10.1073/pnas.0406927102.
CAS
Article
PubMed
Google Scholar
Westman, B., Beeren, L., Grudzien, E., Stepinski, J., Worch, R., et al. (2005) The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro, RNA, 11, 1505-1513, doi:
https://doi.org/10.1261/rna.2132505.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yan, Y., Svitkin, Y., Lee, J. M., Bisaillon, M., and Pelletier, J. (2005) Ribavirin is not a functional mimic of the 7-methyl guanosine mRNA cap, RNA, 11, 1238-1244, doi:
https://doi.org/10.1261/rna.2930805.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kentsis, A., Volpon, L., Topisirovic, I., Soll, C. E., Culjkovic, B., Shao, L., and Borden, K. L. (2005) Further evidence that ribavirin interacts with eIF4E, RNA, 11, 1762-1766, doi:
https://doi.org/10.1261/rna.2238705.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tan, K., Culjkovic, B., Amri, A., and Borden, K. L. (2008) Ribavirin targets eIF4E dependent Akt survival signaling, Biochem. Biophys. Res. Commun., 375, 341-345, doi:
https://doi.org/10.1016/j.bbrc.2008.07.163.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu, J., and Pelletier, J. (2015) Targeting the eIF4A RNA helicase as an anti-neoplastic approach, Biochim. Biophys. Acta, 1849, 781-791, doi:
https://doi.org/10.1016/j.bbagrm.2014.09.006.
CAS
Article
PubMed
Google Scholar
Naineni, S. K., Itoua Maiga, R., Cencic, R., Putnam, A. A., Amador, L. A., Rodriguez, A. D., Jankowsky, E., and Pelletier, J. (2020) A comparative study of small molecules targeting eIF4A, RNA, 26, 541-549, doi:
https://doi.org/10.1261/rna.072884.119.
CAS
Article
PubMed
Google Scholar
Cencic, R., and Pelletier, J. (2016) Hippuristanol – a potent steroid inhibitor of eukaryotic initiation factor 4A, Translation, 4, e1137381, doi:
https://doi.org/10.1080/21690731.2015.1137381.
Article
PubMed
PubMed Central
Google Scholar
Bordeleau, M. E., Matthews, J., Wojnar, J. M., Lindqvist, L., Novac, O., et al. (2005) Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation, Proc. Natl. Acad. Sci. USA, 102, 10460-10465, doi:
https://doi.org/10.1073/pnas.0504249102.
CAS
Article
PubMed
Google Scholar
Low, W. K., Dang, Y., Schneider-Poetsch, T., Shi, Z., Choi, N. S., Merrick, W. C., Romo, D., and Liu, J. O. (2005) Inhibition of eukaryotic translation initiation by the marine natural product pateamine A, Mol. Cell, 20, 709-722, doi:
https://doi.org/10.1016/j.molcel.2005.10.008.
CAS
Article
PubMed
Google Scholar
Iwasaki, S., Iwasaki, W., Takahashi, M., Sakamoto, A., Watanabe, C., et al. (2019) The Translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA, Mol. Cell, 73, 738-748 e739, doi:
https://doi.org/10.1016/j.molcel.2018.11.026.
CAS
Article
PubMed
Google Scholar
Cencic, R., Carrier, M., Galicia-Vazquez, G., Bordeleau, M. E., Sukarieh, R., et al. (2009) Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol, PLoS One, 4, e5223, doi:
https://doi.org/10.1371/journal.pone.0005223.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu, J., Zhang, W., Cencic, R., O’Connor, P. B. F., Robert, F., et al. (2020) Rocaglates induce gain-of-function alterations to eIF4A and eIF4F, Cell Rep., 30, 2481-2488 e2485, doi:
https://doi.org/10.1016/j.celrep.2020.02.002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Low, W. K., Li, J., Zhu, M., Kommaraju, S. S., Shah-Mittal, J., Hull, K., Liu, J. O., and Romo, D. (2014) Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents, Bioorg. Med. Chem., 22, 116-125, doi:
https://doi.org/10.1016/j.bmc.2013.11.046.
CAS
Article
PubMed
Google Scholar
Tillotson, J., Kedzior, M., Guimaraes, L., Ross, A. B., Peters, T. L., et al. (2017) ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A, Bioorg. Med. Chem. Lett., 27, 4082-4085, doi:
https://doi.org/10.1016/j.bmcl.2017.07.045.
CAS
Article
PubMed
PubMed Central
Google Scholar
Stewart, M. L., Grollman, A. P., and Huang, M. T. (1971) Aurintricarboxylic acid: inhibitor of initiation of protein synthesis, Proc. Natl. Acad. Sci. USA, 68, 97-101, doi:
https://doi.org/10.1073/pnas.68.1.97.
CAS
Article
PubMed
Google Scholar
Huang, M. T., and Grollman, A. P. (1973) Pyrocatechol violet: an inhibitor of initiation of protein synthesis, Biochem. Biophys. Res. Commun., 53, 1049-1059, doi:
https://doi.org/10.1016/0006-291x(73)90571-8.
CAS
Article
PubMed
Google Scholar
Gonzalez, R. G., Blackburn, B. J., and Schleich, T. (1979) Fractionation and structural elucidation of the active components of aurintricarboxylic acid, a potent inhibitor of protein nucleic acid interactions, Biochim. Biophys. Acta, 562, 534-545, doi:
https://doi.org/10.1016/0005-2787(79)90116-3.
CAS
Article
PubMed
Google Scholar
Liao, L. L., Horwitz, S. B., Huang, M. T., Grollman, A. P., Steward, D., and Martin, J. (1975) Triphenylmethane dyes as inhibitors of reverse transcriptase, ribonucleic acid polymerase, and protein synthesis. Structure-activity relationships, J. Med. Chem., 18, 117-120, doi:
https://doi.org/10.1021/jm00235a029.
CAS
Article
PubMed
Google Scholar
Leader, D. P. (1972) Aurintricarboxylic acid inhibition of the binding of phenylalanyl-tRNAa to rat liver ribosomal subunits, FEBS Lett., 22, 245-248, doi:
https://doi.org/10.1016/0014-5793(72)80055-3.
CAS
Article
PubMed
Google Scholar
Contreras, A., Vazquez, D., and Carrasco, L. (1978) Inhibition, by selected antibiotics, of protein synthesis in cells growing in tissue cultures, J. Antibiot. (Tokyo), 31, 598-602, doi:
https://doi.org/10.7164/antibiotics.31.598.
CAS
Article
Google Scholar
Novac, O., Guenier, A. S., and Pelletier, J. (2004) Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen, Nucleic Acids Res., 32, 902-915, doi:
https://doi.org/10.1093/nar/gkh235.
CAS
Article
PubMed
PubMed Central
Google Scholar
Terenin, I. M., Dmitriev, S. E., Andreev, D. E., and Shatsky, I. N. (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2, Nat. Struct. Mol. Biol., 15, 836-841, doi:
https://doi.org/10.1038/nsmb.1445.
CAS
Article
PubMed
Google Scholar
Robert, F., Kapp, L. D., Khan, S. N., Acker, M. G., Kolitz, S., et al. (2006) Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2.GTP.Met-tRNA(i)(Met) ternary complex availability, Mol. Biol. Cell, 17, 4632-4644, doi:
https://doi.org/10.1091/mbc.e06-06-0478.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carvalho, A., Chu, J., Meinguet, C., Kiss, R., Vandenbussche, G., Masereel, B., Wouters, J., Kornienko, A., Pelletier, J., and Mathieu, V. (2017) A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis, Eur. J. Pharmacol., 805, 25-35, doi:
https://doi.org/10.1016/j.ejphar.2017.03.034.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee, J., Kang, S. U., Kang, M. K., Chun, M. W., Jo, Y. J., Kwak, J. H., and Kim, S. (1999) Methionyl adenylate analogues as inhibitors of methionyl-tRNA synthetase, Bioorg. Med. Chem. Lett., 9, 1365-1370, doi:
https://doi.org/10.1016/s0960-894x(99)00206-1.
CAS
Article
PubMed
Google Scholar
Lee, J., Kang, M. K., Chun, M. W., Jo, Y. J., Kwak, J. H., and Kim, S. (1998) Methionine analogues as inhibitors of methionyl-tRNA synthetase, Bioorg. Med. Chem. Lett., 8, 3511-3514, doi:
https://doi.org/10.1016/s0960-894x(98)00642-8.
CAS
Article
PubMed
Google Scholar
Nevinsky, G. A., Favorova, O. O., Lavrik, O. I., Petrova, T. D., Kochkina, L. L., and Savchenko, T. I. (1974) Fluorinated tryptophans as substrates and inhibitors of the ATP--(32P)PPi exchange reaction catalysed by tryptophanyl tRNA synthetase, FEBS Lett., 43, 135-138, doi:
https://doi.org/10.1016/0014-5793(74)80985-3.
CAS
Article
PubMed
Google Scholar
Zhao, Y., Meng, Q., Bai, L., and Zhou, H. (2014) In silico discovery of aminoacyl-tRNA synthetase inhibitors, Int. J. Mol. Sci., 15, 1358-1373, doi:
https://doi.org/10.3390/ijms15011358.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lux, M. C., Standke, L. C., and Tan, D. S. (2019) Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors, J. Antibiot. (Tokyo), 72, 325-349, doi:
https://doi.org/10.1038/s41429-019-0171-2.
CAS
Article
Google Scholar
Francklyn, C. S., and Mullen, P. (2019) Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics, J. Biol. Chem., 294, 5365-5385, doi:
https://doi.org/10.1074/jbc.REV118.002956.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alix, J. H. (1982) Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine, Microbiol. Rev., 46, 281-295.
CAS
Article
Google Scholar
Fang, P., Yu, X., Jeong, S. J., Mirando, A., Chen, K., Chen, X., Kim, S., Francklyn, C. S., and Guo, M. (2015) Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase, Nat. Commun., 6, 6402, doi:
https://doi.org/10.1038/ncomms7402.
CAS
Article
PubMed
PubMed Central
Google Scholar
El Khoury, A., and Atoui, A. (2010) Ochratoxin a: general overview and actual molecular status, Toxins, 2, 461-493, doi:
https://doi.org/10.3390/toxins2040461.
CAS
Article
PubMed
PubMed Central
Google Scholar
Keller, T. L., Zocco, D., Sundrud, M. S., Hendrick, M., Edenius, M., et al. (2012) Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase, Nat. Chem. Biol., 8, 311-317, doi:
https://doi.org/10.1038/nchembio.790.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sundrud, M. S., Koralov, S. B., Feuerer, M., Calado, D. P., Kozhaya, A. E., et al. (2009) Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response, Science, 324, 1334-1338, doi:
https://doi.org/10.1126/science.1172638.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sarkar, J., Mao, W., Lincecum, T. L., Jr., Alley, M. R., and Martinis, S. A. (2011) Characterization of benzoxaborole-based antifungal resistance mutations demonstrates that editing depends on electrostatic stabilization of the leucyl-tRNA synthetase editing cap, FEBS Lett., 585, 2986-2991, doi:
https://doi.org/10.1016/j.febslet.2011.08.010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Marjanovic, J., and Kozmin, S. A. (2007) Spirofungin A: stereoselective synthesis and inhibition of isoleucyl-tRNA synthetase, Angew. Chem. Int. Ed. Engl., 46, 8854-8857, doi:
https://doi.org/10.1002/anie.200702440.
CAS
Article
PubMed
Google Scholar
Shimizu, T., Usui, T., Machida, K., Furuya, K., Osada, H., and Nakata, T. (2002) Chemical modification of reveromycin A and its biological activities, Bioorg. Med. Chem. Lett., 12, 3363-3366, doi:
https://doi.org/10.1016/s0960-894x(02)00782-5.
CAS
Article
PubMed
Google Scholar
Miyamoto, Y., Machida, K., Mizunuma, M., Emoto, Y., Sato, N., et al. (2002) Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A, J. Biol. Chem., 277, 28810-28814, doi:
https://doi.org/10.1074/jbc.M203827200.
CAS
Article
PubMed
Google Scholar
Woo, J. T., Kawatani, M., Kato, M., Shinki, T., Yonezawa, T., Kanoh, N., Nakagawa, H., Takami, M., Lee, K. H., Stern, P. H., Nagai, K., and Osada, H. (2006) Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts, Proc. Natl. Acad. Sci. USA, 103, 4729-4734, doi:
https://doi.org/10.1073/pnas.0505663103.
CAS
Article
PubMed
Google Scholar
Kirillov, S., Vitali, L. A., Goldstein, B. P., Monti, F., Semenkov, Y., Makhno, V., Ripa, S., Pon, C. L., and Gualerzi, C. O. (1997) Purpuromycin: an antibiotic inhibiting tRNA aminoacylation, RNA, 3, 905-913.
CAS
PubMed
PubMed Central
Google Scholar
Van de Vijver, P., Ostrowski, T., Sproat, B., Goebels, J., Rutgeerts, O., Van Aerschot, A., Waer, M., and Herdewijn, P. (2008) Aminoacyl-tRNA synthetase inhibitors as potent and synergistic immunosuppressants, J. Med. Chem., 51, 3020-3029, doi:
https://doi.org/10.1021/jm8000746.
CAS
Article
PubMed
Google Scholar
Kim, Y., Sundrud, M. S., Zhou, C., Edenius, M., Zocco, D., et al. (2020) Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells, Proc. Natl. Acad. Sci. USA, 117, 8900-8911, doi:
https://doi.org/10.1073/pnas.1913788117.
CAS
Article
PubMed
Google Scholar
Proud, C. G. (2019) Phosphorylation and signal transduction pathways in translational control, Cold Spring Harb. Perspect. Biol., 11, a033050, doi:
https://doi.org/10.1101/cshperspect.a033050.
CAS
Article
PubMed
Google Scholar
Roux, P. P., and Topisirovic, I. (2012) Regulation of mRNA translation by signaling pathways, Cold Spring Harb. Perspect. Biol., 4, a012252, doi:
https://doi.org/10.1101/cshperspect.a012252.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thoreen, C. C. (2017) The molecular basis of mTORC1-regulated translation, Biochem. Soc. Trans., 45, 213-221, doi:
https://doi.org/10.1042/BST20160072.
CAS
Article
PubMed
Google Scholar
Siddiqui, N., and Sonenberg, N. (2015) Signalling to eIF4E in cancer, Biochemical Soc. Trans., 43, 763-772, doi:
https://doi.org/10.1042/BST20150126.
CAS
Article
Google Scholar
Andreev, D. E., Dmitriev, S. E., Loughran, G., Terenin, I. M., Baranov, P. V., and Shatsky, I. N. (2018) Translation control of mRNAs encoding mammalian translation initiation factors, Gene, 651, 174-182, doi:
https://doi.org/10.1016/j.gene.2018.02.013.
CAS
Article
PubMed
Google Scholar
Cockman, E., Anderson, P., and Ivanov, P. (2020) TOP mRNPs: molecular mechanisms and principles of regulation, Biomolecules, 10, doi:
https://doi.org/10.3390/biom10070969.
Article
Google Scholar
Hua, H., Kong, Q., Zhang, H., Wang, J., Luo, T., and Jiang, Y. (2019) Targeting mTOR for cancer therapy, J. Hematol. Oncol., 12, 71, doi:
https://doi.org/10.1186/s13045-019-0754-1.
Article
PubMed
PubMed Central
Google Scholar
Anisimova, A. S., Meerson, M. B., Gerashchenko, M. V., Kulakovskiy, I. V., Dmitriev, S. E., and Gladyshev, V. N. (2020) Multifaceted deregulation of gene expression and protein synthesis with age, Proc. Natl. Acad. Sci. USA, 117, 15581-15590, doi:
https://doi.org/10.1073/pnas.2001788117.
CAS
Article
PubMed
Google Scholar
Anisimova, A. S., Alexandrov, A. I., Makarova, N. E., Gladyshev, V. N., and Dmitriev, S. E. (2018) Protein synthesis and quality control in aging, Aging, 10, 4269-4288, doi:
https://doi.org/10.18632/aging.101721.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schenone, S., Brullo, C., Musumeci, F., Radi, M., and Botta, M. (2011) ATP-competitive inhibitors of mTOR: an update, Curr. Med. Chem., 18, 2995-3014, doi:
https://doi.org/10.2174/092986711796391651.
CAS
Article
PubMed
Google Scholar
Brunn, G. J., Williams, J., Sabers, C., Wiederrecht, G., Lawrence, J. C., Jr., and Abraham, R. T. (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, EMBO J., 15, 5256-5267.
CAS
Article
Google Scholar
Li, B. B., Qian, C., Gameiro, P. A., Liu, C. C., Jiang, T., Roberts, T. M., Struhl, K., and Zhao, J. J. (2018) Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins, Proc. Natl. Acad. Sci. USA, 115, E9325-E9332, doi:
https://doi.org/10.1073/pnas.1805782115.
CAS
Article
PubMed
Google Scholar
Donnelly, N., Gorman, A. M., Gupta, S., and Samali, A. (2013) The eIF2alpha kinases: their structures and functions, Cell. Mol. Life Sci., 70, 3493-3511, doi:
https://doi.org/10.1007/s00018-012-1252-6.
CAS
Article
PubMed
Google Scholar
Wek, R. C. (2018) Role of eIF2alpha kinases in translational control and adaptation to cellular stress, Cold Spring Harb. Perspect. Biol., 10, doi:
https://doi.org/10.1101/cshperspect.a032870.
Article
Google Scholar
Akulich, K. A., Andreev, D. E., Terenin, I. M., Smirnova, V. V., Anisimova, A. S., et al. (2016) Four translation initiation pathways employed by the leaderless mRNA in eukaryotes, Sci. Rep., 6, 37905, doi:
https://doi.org/10.1038/srep37905.
CAS
Article
PubMed
PubMed Central
Google Scholar
Joshi, M., Kulkarni, A., and Pal, J. K. (2013) Small molecule modulators of eukaryotic initiation factor 2alpha kinases, the key regulators of protein synthesis, Biochimie, 95, 1980-1990, doi:
https://doi.org/10.1016/j.biochi.2013.07.030.
CAS
Article
PubMed
Google Scholar
Chen, T., Ozel, D., Qiao, Y., Harbinski, F., Chen, L., et al. (2011) Chemical genetics identify eIF2alpha kinase heme-regulated inhibitor as an anticancer target, Nat. Chem. Biol., 7, 610-616, doi:
https://doi.org/10.1038/nchembio.613.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ganz, J., Shacham, T., Kramer, M., Shenkman, M., Eiger, H., et al. (2020) A novel specific PERK activator reduces toxicity and extends survival in Huntington's disease models, Sci. Rep., 10, 6875, doi:
https://doi.org/10.1038/s41598-020-63899-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Stockwell, S. R., Platt, G., Barrie, S. E., Zoumpoulidou, G., Te Poele, R. H., et al. (2012) Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling, PLoS One, 7, e28568, doi:
https://doi.org/10.1371/journal.pone.0028568.
CAS
Article
PubMed
PubMed Central
Google Scholar
Damgaard, C. K., and Lykke-Andersen, J. (2011) Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR, Genes Dev., 25, 2057-2068, doi:
https://doi.org/10.1101/gad.17355911.
CAS
Article
PubMed
PubMed Central
Google Scholar
Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., et al. (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory, Cell, 129, 195-206, doi:
https://doi.org/10.1016/j.cell.2007.01.050.
CAS
Article
PubMed
PubMed Central
Google Scholar
Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., et al. (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress, Science, 307, 935-939, doi:
https://doi.org/10.1126/science.1101902.
CAS
Article
PubMed
Google Scholar
Kim, S. M., Yoon, S. Y., Choi, J. E., Park, J. S., Choi, J. M., Nguyen, T., and Kim, D. H. (2010) Activation of eukaryotic initiation factor-2 alpha-kinases in okadaic acid-treated neurons, Neuroscience, 169, 1831-1839, doi:
https://doi.org/10.1016/j.neuroscience.2010.06.016.
CAS
Article
PubMed
Google Scholar
Wakula, P., Beullens, M., van Eynde, A., Ceulemans, H., Stalmans, W., and Bollen, M. (2006) The translation initiation factor eIF2beta is an interactor of protein phosphatase-1, Biochem. J., 400, 377-383, doi:
https://doi.org/10.1042/BJ20060758.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kolupaeva, V. (2019) Serine-threonine protein phosphatases: Lost in translation, Biochim. Biophys. Acta Mol. Cell Res., 1866, 83-89, doi:
https://doi.org/10.1016/j.bbamcr.2018.08.006.
CAS
Article
PubMed
Google Scholar
Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham, P., Hearn, B. R., et al. (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory, eLife, 2, e00498, doi:
https://doi.org/10.7554/eLife.00498.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rabouw, H. H., Langereis, M. A., Anand, A. A., Visser, L. J., de Groot, R. J., Walter, P., and van Kuppeveld, F. J. M. (2019) Small molecule ISRIB suppresses the integrated stress response within a defined window of activation, Proc. Natl. Acad. Sci. USA, 116, 2097-2102, doi:
https://doi.org/10.1073/pnas.1815767116.
CAS
Article
PubMed
Google Scholar
Chen, Z., Gopalakrishnan, S. M., Bui, M. H., Soni, N. B., Warrior, U., Johnson, E. F., Donnelly, J. B., and Glaser, K. B. (2011) 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): a cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor, J. Biol. Chem., 286, 43951-43958, doi:
https://doi.org/10.1074/jbc.M111.301291.
CAS
Article
PubMed
PubMed Central
Google Scholar
De Gassart, A., Demaria, O., Panes, R., Zaffalon, L., Ryazanov, A. G., Gilliet, M., and Martinon, F. (2016) Pharmacological eEF2K activation promotes cell death and inhibits cancer progression, EMBO Rep., 17, 1471-1484, doi:
https://doi.org/10.15252/embr.201642194.
CAS
Article
PubMed
PubMed Central
Google Scholar
Devkota, A. K., Tavares, C. D., Warthaka, M., Abramczyk, O., Marshall, K. D., Kaoud, T. S., Gorgulu, K., Ozpolat, B., and Dalby,