Skip to main content
Log in

Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The concept of “electric cables” involved in bioenergetic processes in a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. Membrane structures of a cell were considered as probable pathways for transferring transmembrane electrochemical potential. Further studies have shown that coupling membranes (inner mitochondrial membrane or bacterial cell membrane), i.e., those involved in the generation of membrane potential, can also serve for its transfer. A wide range of organisms from almost all major taxa have been discovered to employ the energy-transmitting function of coupling membranes. Macroscopic (millimeter or even centimeter in length) cable-like structures have been found, the most striking examples of which are giant mitochondria of some unicellular organisms (algae, fungi, protozoa) and animal tissues, filamentous mitochondria, mitochondrial reticulum in animal muscle tissue, and trichomes of cyanobacteria. The importance of such “electric cables” in cells or multicellular structures is determined by their ability to provide rapid energy exchange between metabolic counterparts, energy producers and energy consumers, as the diffusive transport of soluble macroergic molecules (ATP, etc.) requires much longer time. However, in the last 10-15 years, a new type of bacterial “electric cables” of presumably proteinaceous nature has been discovered, which serve a quite different purpose in cell bioenergetics. The molecular structure and functions of these cables will be discussed in the second part of the review (“Electric cables of living cells. II. Bacterial electron conductors”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ΔµH+ :

transmembrane proton electrochemical potential

ER:

endoplasmic reticulum

GFP:

green fluorescent protein

REFERENCES

  1. Galvani, L. (1792) De viribus electricitatis in motu musculari comentarius cum Joannis Aldini dissertatione et notis; accesserunt epistolae ad animalis electricitatis theoriam pertinentes, Apud Societatem Typographicam.

  2. Hodgkin, A. L., and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500-544.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144-148.

    CAS  PubMed  Google Scholar 

  4. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev., 41, 445-501.

    CAS  PubMed  Google Scholar 

  5. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078.

    CAS  PubMed  Google Scholar 

  6. Green, D. E. (1974) The electromechanical model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346, 27-78.

    CAS  PubMed  Google Scholar 

  7. Skulachev, V. P. (1971) Energy transformations in the respiratory chain, Curr. Top. Bioenerg., Elsevier, pp. 127-190.

  8. Skulachev, V. P. (1980) Integrating functions of biomembranes. Problems of lateral transport of energy, metabolites and electrons, Biochim. Biophys. Acta, 604, 297-320.

    CAS  PubMed  Google Scholar 

  9. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R. (2005) Extracellular electron transfer via microbial nanowires, Nature, 435, 1098-1101.

    CAS  PubMed  Google Scholar 

  10. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071-1074.

    CAS  PubMed  Google Scholar 

  11. Filman, D. J., Marino, S. F., Ward, J. E., Yang, L., Mester, Z., Bullitt, E, Lovley, D. R., and Strauss, M. (2019) Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire, Commun. Biol., 2, 1-6.

    Google Scholar 

  12. Wang, F., Gu, Y., O’Brien, J. P., Sophia, M. Y., Yalcin, S. E., Srikanth, V. Shen, C., Vu, D., Ing, N. L., Hochbaum, A. I., Egelman, E. H., and Malvankar, N. S. (2019) Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers, Cell, 177, 361-369.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gilëv, V. P., and Mel’nikova, E. (1969) Mitochondria and the excitation-contraction process in a muscle fiber, Tsitologiia, 11, 117-120.

    PubMed  Google Scholar 

  14. Margreth, A., Muscatello, U., and Andersson-Cedergren, E. (1963) A morphological and biochemical study on the regulation of carbohydrate metabolism in the muscle cell, Exp. Cell Res., 32, 484-509.

    CAS  PubMed  Google Scholar 

  15. Walker, S. M., and Schrodt, G. R. (1966) Evidence for connections between mitochondria and the sarcoplasmic reticulum and evidence for glycogen granules within the sarcoplasmic reticulum, Am. J. Phys. Med., 45, 25-44.

    CAS  PubMed  Google Scholar 

  16. Bubenzer, H. J. (1966) The thin and the thick muscular fibers of the rat diaphragm, Z. Zellforsch. Mikrosk. Anat., 69, 520.

    CAS  PubMed  Google Scholar 

  17. Gauthier, G. F. (1969) On the relationship of ultrastructural and cytochemical features to color in mammalian skeletal muscle, Z. Zellforsch. Mikrosk. Anat., 95, 462-482.

    CAS  PubMed  Google Scholar 

  18. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys. Acta, 501, 349-369.

    CAS  PubMed  Google Scholar 

  19. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1981) Ontogenesis of mitochondrial reticulum in rat diaphragm muscle, Eur. J. Cell Biol., 25, 175-181.

    CAS  PubMed  Google Scholar 

  20. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1983) Intermitochondrial contacts in myocardiocytes, J. Mol. Cell. Cardiol., 15, 413-420.

    CAS  PubMed  Google Scholar 

  21. Glancy, B., Hartnell, L. M., Malide, D., Yu, Z. X., Combs, C. A., Connelly, P. S., Subramaniam, S., and Balaban, R. S. (2015) Mitochondrial reticulum for cellular energy distribution in muscle, Nature, 523, 617-620.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2011) Membrannaya bioenergetica [Membrane bioenergetics], Izdatelstvo MGU, Moscow.

  23. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell Biol., 107, 481-495.

    CAS  PubMed  Google Scholar 

  24. Drachev, V. A., and Zorov, D. B. (1986) Mitochondria as an electric cable. Experimental testing of a hypothesis, Doklady Akademii Nauk SSSR, 287, 1237-1238.

    CAS  PubMed  Google Scholar 

  25. Osafune, T. (1973) Three-dimensional structures of giant mitochondria, dictyosomes and “concentric lamellar bodies” formed during the cell cycle of Euglena gracilis (Z) in synchronous culture, Microscopy, 22, 51-61.

    CAS  Google Scholar 

  26. Burton, M. D., and Moore, J. (1974) The mitochondrion of the flagellate, Polytomella agilis, J. Ultrastruct. Res., 48, 414-419.

    Google Scholar 

  27. Hoffmann, H.-P., and Avers, C. J. (1973) Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell, Science, 181, 749-751.

    CAS  PubMed  Google Scholar 

  28. Komárek, J., and Johansen, J. R. (2015) Filamentous cyanobacteria, Freshwater Algae of North America, Elsevier, pp. 135-235.

  29. Schnepf, E. (1964) Zur Feinstruktur von Geosiphon Pyriforme, Arch. Mikrobiol., 49, 112-131, doi: https://doi.org/10.1007/BF00422136 .

    Article  Google Scholar 

  30. Van De Meene, A. M. L., Hohmann-Marriott, M. F., Vermaas, W. F. J., and Roberson, R. W. (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803, Arch. Microbiol., 184, 259-270.

    PubMed  Google Scholar 

  31. Schneider, D., Fuhrmann, E., Scholz, I., Hess, W. R., and Graumann, P. L. (2007) Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes, BMC Cell Biol., 8, 1-10.

    Google Scholar 

  32. Nevo, R., Charuvi, D., Shimoni, E., Schwarz, R., Kaplan, A., Ohad, I., and Reich, Z. (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria, EMBO J., 26, 1467-1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Flores, E., Nieves-Morión, M., and Mullineaux, C. W. (2019) Cyanobacterial septal junctions: properties and regulation, Life, 9, 1.

    Google Scholar 

  34. Chailakhyan, L. M., Glagolev, A. N., Glagoleva, T. N., Murvanidze, G. V., Potapova, T. V., and Skulachev, V. P. (1982) Intercellular power transmission along trichomes of cyanobacteria, Biochim. Biophys. Acta, 679, 60-67.

    CAS  Google Scholar 

  35. Potapova, T. V., and Koksharova, O. A. (2020) Filamentous cyanobacteria as a prototype of multicellular organisms, Russ. J. Plant Physiol., 67, 17-30.

    CAS  Google Scholar 

  36. Chapman, A. G., and Atkinson, D. E. (1977) Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast, Adv. Microb. Physiol., 15, 253-306.

    CAS  PubMed  Google Scholar 

  37. Nasrulhaq-Boyce, A., and Duckett, J. G. (1991) Dimorphic epidermal cell chloroplasts in the mesophyll-less leaves of an extreme-shade tropical fern, Teratophyllum rotundifoliatum (R. Bonap.) Holtt.: a light and electron microscope study, New Phytol., 119, 433-444.

    Google Scholar 

  38. Sheue, C.-R., Sarafis, V., Kiew, R., Liu, H.-Y., Salino, A., Kuo-Huang, L.-L., Yang, Y.-P., Tsai, C.-C., Lin, C.-H., Yong, J. W. H., and Ku, M. S. B. (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae., Am. J. Botany, 94, 1922-1929.

    Google Scholar 

  39. Paolillo, D. J. (1970) The three-dimensional arrangement of intergranal lamellae in chloroplasts, J. Cell Sci., 6, 243-253.

    PubMed  Google Scholar 

  40. Austin, J. R., and Staehelin, L. A. (2011) Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography, Plant Physiol., 155, 1601-1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson, J. M. (2012) Lateral heterogeneity of plant thylakoid protein complexes: early reminiscences, Philos. Trans. R. Soc. B Biol. Sci., 367, 3384-3388.

    CAS  Google Scholar 

  42. Rottenberg, H., and Grunwald, T. (1972) Determination of ΔpH in chloroplasts. 3. Ammonium uptake as a measure of ΔpH in chloroplasts and sub-chloroplast particles, Eur. J. Biochem., 25, 71-74.

    CAS  PubMed  Google Scholar 

  43. Tikhonov, A. N., Agafonov, R. V, Grigor’ev, I. A., Kirilyuk, I. A., Ptushenko, V. V., and Trubitsin, B. V. (2008) Spin-probes designed for measuring the intrathylakoid pH in chloroplasts, Biochim. Biophys. Acta, 1777, 285-294.

    CAS  PubMed  Google Scholar 

  44. De Kouchkovsky, Y., and Haraux, F. (1981) 2H2O effect on the electron and proton flow in isolated chloroplasts: an indication for lateral heterogeneity of membrane pH, Biochem. Biophys. Res. Commun., 99, 205-212.

    CAS  PubMed  Google Scholar 

  45. De Kouchkovsky, Y., Haraux, F., and Sigalat, C. (1982) Effect of hydrogen-deuterium exchange on energy-coupled processes in thylakoids: a new illustration of the hypothesis of local proton gradients with the energy-transducing biomembranes, FEBS Lett., 139, 245-249.

    CAS  Google Scholar 

  46. Vershubskii, A. V., Trubitsin, B. V., Priklonskii, V. I., and Tikhonov, A. N. (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts, Biochim. Biophys. Acta, 1859, 388-401.

    CAS  Google Scholar 

  47. Rieger, B., Junge, W., and Busch, K. B. (2014) Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes, Nat. Commun., 5, 1-7.

    Google Scholar 

  48. Kirchhoff, H., Hall, C., Wood, M., Herbstová, M., Tsabari, O., Nevo, R., Charuvi, D., Shimoni, E., and Reich, Z. (2011) Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248-20253.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Daum, B., Nicastro, D., Austin, J., McIntosh, J. R., and Kühlbrandt, W. (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea, Plant Cell, 22, 1299-1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Takizawa, K., Cruz, J. A., Kanazawa, A., and Kramer, D. M. (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced PMF, Biochim. Biophys. Acta, 1767, 1233-1244.

    CAS  PubMed  Google Scholar 

  51. Jahns, P., Latowski, D., and Strzalka, K. (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids, Biochim. Biophys. Acta, 1787, 3-14.

    CAS  PubMed  Google Scholar 

  52. Ptushenko, V. V, Ptushenko, E. A., Samoilova, O. P., and Tikhonov, A. N. (2013) Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light, Biosystems, 114, 85-97.

    CAS  PubMed  Google Scholar 

  53. Bulychev, A. A., and Komarova, A. V. (2014) Long-distance signal transmission and regulation of photosynthesis in characean cells, Biochemistry (Moscow), 79, 273-281.

    CAS  Google Scholar 

  54. Krupenina, N. A., and Bulychev, A. A. (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1767, 781-788.

    CAS  PubMed  Google Scholar 

  55. Szechynska-Hebda, M., Kruk, J., Górecka, M., Karpińska, B., and Karpiński, S. (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis, Plant Cell, 22, 2201-2218.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Haberlandt, G. (1888) Die Chlorophyllkörper der Selaginellen, Neubauer.

  57. Velikanov, G. A. (2009) Stromules: their nature, structure and functions in a plant cell, Biol. Membr., 26, 468-478.

    CAS  Google Scholar 

  58. Senn, G. (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren: Mit einer Beilage: Die Lichtbrechung der Lebenden Pflanzenzelle, Engelmann, W., p. 397.

  59. Schattat, M. H., Barton, K. A., and Mathur, J. (2015) The myth of interconnected plastids and related phenomena, Protoplasma, 252, 359-371.

    CAS  PubMed  Google Scholar 

  60. Wildman, S. G., Hongladarom, T., and Honda, S. I. (1962) Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies, Science, 138, 434-436.

    CAS  PubMed  Google Scholar 

  61. Menzel, D. (1994) An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility, Protoplasma, 179, 166-171.

    Google Scholar 

  62. Köhler, R. H., Cao, J., Zipfel, W. R., Webb, W. W., and Hanson, M. R. (1997) Exchange of protein molecules through connections between higher plant plastids, Science, 276, 2039-2042.

    PubMed  Google Scholar 

  63. Kwok, E. Y., and Hanson, M. R. (2004) GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids, J. Exp. Bot., 55, 595-604.

    CAS  PubMed  Google Scholar 

  64. Kohler, R. H., and Hanson, M. R. (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated, J. Cell Sci., 113, 81-89.

    CAS  PubMed  Google Scholar 

  65. Velikanov, G. A., Levanov, V. Y., Belova, L. P., Ponomareva, A. A., and Il’ina, T. M. (2012) Adjustable channel for diffusion between vacuoles of next cells: vacuolar symplast, Biol. Bull. Rev., 2, 306-317.

    Google Scholar 

  66. Robards, A. W. (1976) Plasmodesmata in higher plants, in Intercellular Communication in Plants: Studies on Plasmodesmata (Gunning, B. E. S., and Robards, A. W., eds.) Springer, pp. 15-57.

  67. Carmody, M., and Pogson, B. (2013) Systemic photooxidative stress signalling, in Long-Distance Systemic Signaling and Communication in Plants (Baluska, F., ed.) Springer, pp. 251-274.

  68. Hedrich, R., Salvador-Recatalà, V., and Dreyer, I. (2016) Electrical wiring and long-distance plant communication, Trends Plant Sci., 21, 376-387.

    CAS  PubMed  Google Scholar 

  69. Borucki, W., Bederska, M., and Sujkowska-Rybkowska, M. (2015) Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining, Plant Cell Rep., 34, 853-860.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roh, M. H., Shingles, R., Cleveland, M. J., and McCarty, R. E. (1998) Direct measurement of calcium transport across chloroplast inner-envelope vesicles, Plant Physiol., 118, 1447-1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shingles, R., North, M., and McCarty, R. E. (2002) Ferrous ion transport across chloroplast inner envelope membranes, Plant Physiol., 128, 1022-1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Heber, U., and Heldt, H. W. (1981) The chloroplast envelope: structure, function, and role in leaf metabolism, Annu. Rev. Plant Physiol., 32, 139-168.

    CAS  Google Scholar 

  73. Carde, J. P., Joyard, J., and Douce, R. (1982) Electron microscopic studies of envelope membranes from spinach plastids, Biol. Cell, 44, 315-324.

    Google Scholar 

  74. Douce, R., and Joyard, J. (1990) Biochemistry and function of the plastid envelope, Annu. Rev. Cell Biol., 6, 173-216.

    CAS  PubMed  Google Scholar 

  75. Vothknecht, U. C., and Westhoff, P. (2001) Biogenesis and origin of thylakoid membranes, Biochim. Biophys. Acta, 1541, 91-101.

    CAS  PubMed  Google Scholar 

  76. Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V., and Reich, Z. (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography, Plant Cell, 17, 2580-2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Heldt, H. W., Werdan, K., Milovancev, M., and Geller, G. (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space, Biochim. Biophys. Acta, 314, 224-241.

    CAS  PubMed  Google Scholar 

  78. Berkowitz, G. A., and Peters, J. S. (1993) Chloroplast inner-envelope ATPase acts as a primary H+ pump, Plant Physiol., 102, 261-267.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research (project No. 19-14-50558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ptushenko.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptushenko, V. Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes. Biochemistry Moscow 85, 820–832 (2020). https://doi.org/10.1134/S000629792007010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792007010X

Keywords

Navigation