Skip to main content
Log in

Bovine bta-microRNA-1271 Promotes Preadipocyte Differentiation by Targeting Activation Transcription Factor 3

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Yanbian yellow cattle are one of the top five largest breeds of cattle in China. We had previously found that bta-miR-1271 is differentially expressed in the longissimus dorsi muscles of Yanbian yellow bulls and steers. However, whether bta-miR-1271 affects bovine fat formation is unclear. In this study, we used target gene prediction, dual-luciferase reporter assay, and transfection-mediated overexpression and inhibition of bta-miR-1271 in a culture of Yanbian yellow cattle preadipocytes to investigate the role of bta-miR-1271 in adipogenesis. We showed that bta-miR-1271 directly targets the 3′-untranslated region (3′-UTR) of the activating transcription factor 3 (ATF3) mRNA and downregulates its expression. Overexpression of bta-miR-1271 enforced by the miRNA mimics promoted triglyceride accumulation and significantly upregulated expression of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer-binding protein α (C/EBPα) genes at both the protein and mRNA levels, as demonstrated by RT-qPCR and Western blot analyses. Conversely, inhibition of bta-miR-1271 expression produced the opposite effect. Our results show that bta-miR-1271 regulates differentiation of Yanbian yellow cattle preadipocytes by inhibiting ATF3 expression, which highlights the importance of microRNA-mediated regulation of adipogenesis. miR-1271 and its target gene(s) may provide a new research direction for investigating biological agents affecting intramuscular fat deposition in cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

ATF3:

activation transcription factor 3

C/EBPα:

CCAAT/enhancer binding protein α

miRNA:

microRNA

MUT:

mutant type

NC:

negative control

PPARγ:

peroxisome proliferator-activated receptor γ

UTR:

untranslated region

WT:

wild type

REFERENCES

  1. Yun, J., Jin, H., Cao, Y., Zhang, L., Zhao, Y., Jin, X., and Yu, Y. (2018) RNA-Seq analysis reveals a positive role of HTR2A in adipogenesis in Yan yellow cattle, Int. J. Mol. Sci., 19, 1760, doi: https://doi.org/10.3390/ijms19061760 .

    Article  CAS  PubMed Central  Google Scholar 

  2. Han, J., Lee, J. E., Jin, J., Lim, J. S., Oh, N., Kim, K., Chang, S., Shibuya, M., Kim, H., and Koh, G. Y. (2011) The spatiotemporal development of adipose tissue, Development, 138, 5027-5037, doi: https://doi.org/10.1242/dev.067686 .

    Article  CAS  PubMed  Google Scholar 

  3. Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., Tallquist, M. D., and Graff, J. M. (2008) White fat progenitor cells reside in the adipose vasculature, Science, 322, 583-586, doi: https://doi.org/10.1126/science.1156232 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dani, C., Smith, A., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., Darimont, C., and Ailhaud, G. (1997) Differentiation of embryonic stem cells into adipocytes in vitro, J. Cell Sci., 110, 1279-1285, doi: https://doi.org/10.1159/000244147 .

    Article  CAS  PubMed  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W. J. W. R., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143-147, doi: https://doi.org/10.1126/science.284.5411.143 .

    Article  CAS  PubMed  Google Scholar 

  6. Gregoire, F. M., Smas, C. M., and Sul, H. S. (1998) Understanding adipocyte differentiation, Physiol. Rev., 78, 783-809, doi: https://doi.org/10.1152/physrev.1998.78.3.783 .

    Article  CAS  PubMed  Google Scholar 

  7. Otto, T. C., and Lane, M. D. (2005) Adipose development: from stem cell to adipocyte, Crit. Rev. Biochem. Mol. Biol., 40, 229-242, doi: https://doi.org/10.1080/10409230591008189 .

    Article  CAS  PubMed  Google Scholar 

  8. Gregoire, F. M. (2001) Adipocyte differentiation: from fibroblast to endocrine cell, Exp. Biol. Med., 226, 997-1002, doi: https://doi.org/10.1177/153537020122601106 .

    Article  CAS  Google Scholar 

  9. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281-297, doi: https://doi.org/10.1016/S0092-8674(04)00045-5 .

    Article  CAS  PubMed  Google Scholar 

  10. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215-233, doi: https://doi.org/10.1016/j.cell.2009.01.002 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vishnoi, A., and Rani, S. (2017) MiRNA biogenesis and regulation of diseases: an overview, Methods Mol. Biol., 1509, 1-10, doi: https://doi.org/10.1007/978-1-4939-6524-3_1 .

    Article  CAS  PubMed  Google Scholar 

  12. Xu, J., Zhang, L., Shu, G., and Wang, B. (2019) MicroRNA-16-5p promotes 3T3-L1 adipocyte differentiation through regulating EPT1, Biochem. Biophys. Res. Commun., 514, 1251-1256, doi: https://doi.org/10.1016/j.bbrc.2019.04.179 .

    Article  CAS  PubMed  Google Scholar 

  13. Li, G., Ning, C., Ma, Y., Jin, L., Tang, Q., Li, X., Li, M., and Liu, H. (2017) miR-26b promotes 3T3-L1 adipocyte differentiation through targeting PTEN, DNA Cell Biol., 36, 672-681, doi: https://doi.org/10.1089/dna.2017.3712 .

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z., Gao, Y., Xu, M., Wang, C., Fu, X., Liu, J., Han, D., Jiang, H., Yuan, B., and Zhang, J. (2019) miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1, Gene, 681, 45-51, doi: https://doi.org/10.1016/j.gene.2018.09.046 .

    Article  CAS  PubMed  Google Scholar 

  15. Pan, Y., Jing, J., Qiao, L., Liu, J., An, L., Li, B., Ren, D., and Liu, W. (2018) MiRNA-seq reveals that miR-124-3p inhibits adipogenic differentiation of the stromal vascular fraction in sheep via targeting C/EBPα, Domest. Anim. Endocrinol., 65, 17-23, doi: https://doi.org/10.1016/j.domaniend.2018.05.002 .

    Article  CAS  PubMed  Google Scholar 

  16. Liu, S., Sun, G., Yuan, B., Zhang, L., Gao, Y., Jiang, H., Dai, L., and Zhang, J. (2016) miR-375 negatively regulates porcine preadipocyte differentiation by targeting BMPR2, FEBS Lett., 590, 1417-1427, doi: https://doi.org/10.1002/1873-3468.12169 .

    Article  CAS  PubMed  Google Scholar 

  17. Gao, Y., Wang, Y., Chen, X., Peng, Y., Chen, F., He, Y., Pang, W., Yang, G., and Yu, T. (2019) MiR-127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes, J. Cell. Physiol., 234, 21838-21850, doi: https://doi.org/10.1002/jcp.28660 .

    Article  CAS  PubMed  Google Scholar 

  18. Xia, G. (2014) Screening of Candidate Genes Associated to Meat Quality Traits of Yanbian Yellow Cattle by a Combination of miRNA and Functional Genes Transcriptome, PhD Thesis, Yanji, Yanbian University [in Chinese].

  19. Tran, K., Gealekman, O., Frontini, A., Zingaretti, M. C., Morroni, M., Giordano, A., Smorlesi, A., Perugini, J., De Matteis, R., and Sbarbati, A. (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells, Cell Metab., 15, 222-229, doi: https://doi.org/10.1016/j.cmet.2012.01.008 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernyhough, M. E., Vierck, J. L., Hausman, G. J., Mir, P. S., Okine, E. K., and Dodson, M. V. (2004) Primary adipocyte culture: adipocyte purification methods may lead to a new understanding of adipose tissue growth and development, Cytotechnology, 46, 163-172, doi: https://doi.org/10.1007/s10616-005-2602-0 .

    Article  CAS  PubMed  Google Scholar 

  21. Carnevalli, L. S., Masuda, K., Frigerio, F., Bacquer, O. L., Um, S. H., Gandin, V., Topisirovic, I., Sonenberg, N., Thomas, G., and Kozma, S. C. (2010) S6K1 plays a critical role in early adipocyte differentiation, Dev. Cell, 18, 763-774, doi: https://doi.org/10.1016/j.devcel.2010.02.018 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xi, F., Wei, C., Xu, Y., Ma, L., He, Y., Shi, X., Yang, G., and Yu, T. (2019) MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte differentiation by interfering with the Wnt/β-catenin signaling pathway, Int. J. Mol. Sci., 20, 1816, doi: https://doi.org/10.3390/ijms20081816 .

    Article  CAS  PubMed Central  Google Scholar 

  23. Zhu, E., Zhang, J., Zhou, J., Yuan, H., Zhao, W., and Wang, B. (2018) miR-20a-5p promotes adipogenic differentiation of murine bone marrow stromal cells via targeting Kruppel-like factor 3, J. Mol. Endocrinol., 60, 225-237, doi: https://doi.org/10.1530/JME-17-0183 .

    Article  CAS  PubMed  Google Scholar 

  24. Shen, L., Li, Q., Wang, J., Zhao, Y., Niu, L., Bai, L., Shuai, S., Li, X., Zhang, S., and Zhu, L. (2018) miR-144-3p promotes adipogenesis through releasing C/EBPα from Klf3 and CtBP2, Front. Genet., 9, doi: https://doi.org/10.3389/fgene.2018.00677 .

    Google Scholar 

  25. Sun, G., Li, F., Ma, X., Sun, J., Jiang, R., Tian, Y., Han, R., Li, G., Wang, Y., and Li, Z. (2019) gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene, Cells, 8, 556, doi: https://doi.org/10.3390/cells8060556 .

    Article  CAS  PubMed Central  Google Scholar 

  26. Jang, S. Y., Chae, M. K., Lee, J. H., Lee, E. J., and Yoon, J. S. (2019) MicroRNA-27 inhibits adipogenic differentiation in orbital fibroblasts from patients with Graves’ orbitopathy, PLoS One, 14, e0221077, doi: https://doi.org/10.1371/journal.pone.0221077 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, M., Yang, Y., Peng, Z., Zhang, M., Liang, J., Chen, W., Liu, X., and Zheng, Y. (2017) FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma, Int. J. Biochem. Cell Biol., 88, 155-161, doi: https://doi.org/10.1016/j.biocel.2017.05.019 .

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., Ma, L., Rao, Q., Mao, Y., Xin, Y., Xu, H., Li, C., and Wang, X. (2015) MiR-1271 inhibits ovarian cancer growth by targeting cyclin G1, Med. Sci. Monit., 21, 3152-3158, doi: https://doi.org/10.12659/MSM.895562 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jensen, K. P., and Covault, J. (2011) Human miR-1271 is a miR-96 paralog with distinct non-conserved brain expression pattern, Nucleic Acids Res., 39, 701-711, doi: https://doi.org/10.1093/nar/gkq798 .

    Article  CAS  PubMed  Google Scholar 

  30. Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E., and Sivaprasad, U. (1999) ATF3 and stress responses, Gene Express., 7, 321-335, doi: https://doi.org/10.1248/bpb.29.2502 .

    Article  CAS  Google Scholar 

  31. Jang, M., and Jung, M. H. (2014) ATF3 represses PPARγ expression and inhibits adipocyte differentiation, Biochem. Biophys. Res. Commun., 454, 58-64, doi: https://doi.org/10.1016/j.bbrc.2014.10.028 .

    Article  CAS  PubMed  Google Scholar 

  32. Jang, M. K., Kim, C. H., Seong, J. K., and Jung, M. H. (2012) ATF3 inhibits adipocyte differentiation of 3T3-L1 cells, Biochem. Biophys. Res. Commun., 421, 38-43, doi: https://doi.org/10.1016/j.bbrc.2012.03.104 .

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H. B., Kong, M., Kim, T. M., Suh, Y. H., Kim, W. H., Lim, J. H., Song, J. H., and Jung, M. H. (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes, Diabetes, 55, 1342-1352, doi: https://doi.org/10.2337/db05-1507 .

    Article  CAS  PubMed  Google Scholar 

  34. Yan, L., Coletta, L. D., Powell, K. L., Shen, J., Thames, H. D., Aldaz, C. M., and Macleod, M. C. (2011) Activation of the canonical Wnt/β-catenin pathway in ATF3-induced mammary tumors, PLoS One, 6, e0016515, doi: https://doi.org/10.1371/journal.pone.0016515 .

    Article  CAS  Google Scholar 

  35. Laudes, M. (2011) Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes, J. Mol. Endocrinol., 46, R65-72, doi: https://doi.org/10.1530/JME-10-0169 .

    Article  CAS  PubMed  Google Scholar 

  36. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., and Macdougald, O. A. (2000) Inhibition of adipogenesis by Wnt signaling, Science, 289, 950-953, doi: https://doi.org/10.1126/science.289.5481.950 .

    Article  CAS  PubMed  Google Scholar 

  37. Jang, M., Son, Y., and Jung, M. H. (2013) ATF3 plays a role in adipocyte hypoxia-mediated mitochondria dysfunction in obesity, Biochem. Biophys. Res. Commun., 431, 421-427, doi: https://doi.org/10.1016/j.bbrc.2012.12.154 .

    Article  CAS  PubMed  Google Scholar 

  38. Li, J., Xu, J., Yan, X., Jin, K., Li, W., and Zhang, R. (2018) Suppression of Capn4 by microRNA-1271 impedes the proliferation and invasion of colorectal cancer cells, Biomed. Pharmacother., 99, 162-168, doi: https://doi.org/10.1016/j.biopha.2017.12.107 .

    Article  CAS  PubMed  Google Scholar 

  39. Xiang, X., Deng, J., Liu, Y., Wan, L., Feng, M., Chen, J., and Xiong, J. (2015) MiR-1271 inhibits cell proliferation, invasion and EMT in gastric cancer by targeting FOXQ1, Cell. Physiol. Biochem., 36, 1382-1394, doi: https://doi.org/10.1159/000430304 .

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Development Plan of Jilin Province of China (project 20160204017NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Xia.

Ethics declarations

The authors declare no conflict of interests. All applicable international, national, and/or institutional guidelines for the care and use of laboratory animals were followed in this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Shao, J., Yin, B. et al. Bovine bta-microRNA-1271 Promotes Preadipocyte Differentiation by Targeting Activation Transcription Factor 3. Biochemistry Moscow 85, 749–757 (2020). https://doi.org/10.1134/S0006297920070032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920070032

Keywords

Navigation