Skip to main content
Log in

Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Main factors involved in carcinogenesis are associated with somatic mutations in oncogenes and tumor suppressor genes representing changes in the DNA nucleotide sequence. Epigenetic changes, such as aberrant DNA methylation, modifications of histone proteins, and chromatin remodeling, are equally important in the development of human neoplasms. From this perspective, mutations in the genes encoding key participants of epigenetic regulation are of particular interest including enzymes that methylate/demethylate DNA, enzymes that covalently attach or remove regulatory signals from histones, components of nucleosome remodeling multiprotein complexes, auxiliary proteins and cofactors of the above-mentioned molecules. This review describes both germline and somatic mutations in the key epigenetic regulators with emphasis on the latter ones in the solid human tumors, as well as considers functional consequences of these mutations on the cellular level. In addition, clinical associations of the somatic mutations in epigenetic regulators are presented, as well as DNA diagnostics of hereditary cancer syndromes due to germline mutations in the SMARC proteins and chemotherapy drugs directly affecting the altered epigenetic mechanisms for treatment of patients with solid neoplasms. The review is intended for a wide range of molecular biologists, geneticists, oncologists, and associated specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure.

Similar content being viewed by others

Abbreviations

BC:

breast cancer

lncRNAs:

long non-coding RNAs

miRNAs:

microRNAs

NGS:

next generation sequencing

NSCLC:

non-small-cell lung cancer, PC, prostate cancer

UBC:

urinary bladder cancer

REFERENCES

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 68, 394-324, doi: https://doi.org/10.3322/caac.21492 .

    Article  PubMed  Google Scholar 

  2. Kaprin, A. D., Starinsky, V. V., and Petrova, G. V. (2019) Malignant Neoplasms in Russia in 2018 (Morbidity and Lethality) Herzen Oncological Institute, Research center of Radiology, Ministry of Health of the Russian Federation, Moscow (in Russian).

  3. Krasilnikov, M. A., and Zborovskaya, I. B. (2016) Molecular Carcinogenesis, ID ABV-Press, Moscow, pp. 84-322 (in Russian).

  4. Patterson, A. D., Gonzalez, F. J., Perdew, G. H., and Peters, J. M. (2018) Molecular regulation of carcinogenesis: friend and foe, Toxicol. Sci., 165, 277-283, doi: https://doi.org/10.1093/toxsci/kfy185 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linehan, W. M., and Ricketts, C. J. (2019) The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications, Nat. Rev. Urol., 16, 539-552, doi: https://doi.org/10.1038/s41585-019-0211-5 .

    Article  CAS  PubMed  Google Scholar 

  6. Creighton, C. J. (2018) The clinical applications of The Cancer Genome Atlas project for bladder cancer, Expert Rev. Anticancer Ther., 18, 973-980, doi: https://doi.org/10.1080/14737140.2018.1508999 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertucci, F., Ng, C. K., Patsouris, A., Droin, N., Piscuoglio, S., et al. (2019) Genomic characterization of metastatic breast cancers, Nature, 569, 560-564, doi: https://doi.org/10.1038/s41586-019-1056-z .

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, Y., Ju, Y. S., Kim, Y., Li, J., Wang, Y., Yoon, C. J., Yang, Y., Martincorena, I., Creighton, C. J., Weinstein, J. N., Xu, Y., Han, L., Kim, H. L., Nakagawa, H., Park, K., Campbell, P. J., Liang, H., and PCAWG Consortium (2020) Comprehensive molecular characterization of mitochondrial genomes in human cancers, Nat. Genet., 52, 342-352, doi: https://doi.org/10.1038/s41588-019-0557-x .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biegel, J. A., Busse, T. M., and Weissman, B. E. (2014) SWI/SNF chromatin remodeling complexes and cancer, Am. J. Med. Genet. C Semin. Med. Genet., 166, 350-366, doi: https://doi.org/10.1002/ajmg.c.31410 .

    Article  CAS  Google Scholar 

  10. Cancer Genome Atlas Research Network; Linehan, W. M., Spellman, P. T., Ricketts, C. J., Creighton, C. J., et al. (2016) Comprehensive molecular characterization of papillary renal-cell carcinoma, N. Engl. J. Med., 374, 135-145, doi: https://doi.org/10.1056/NEJMoa1505917 .

    Article  CAS  Google Scholar 

  11. Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., et al. (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder, Nat. Genet., 43, 875-878, doi: https://doi.org/10.1038/ng.907 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maleszewska, M., Wojtas, B., and Kaminska, B. (2018) Deregulation of epigenetic mechanisms in cancer, Postepy Biochem., 64, 148-156, doi: https://doi.org/10.18388/pb.2018_125 .

    Article  PubMed  Google Scholar 

  13. Kalish, J. M., Jiang, C., and Bartolomei, M. S. (2014) Epigenetics and imprinting in human disease, Int. J. Dev. Biol., 58, 291-298, doi: https://doi.org/10.1387/ijdb.140077mb .

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, M. L., and Marcato, P. (2018) Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the Cancer Care Continuum, Cancers (Basel), 10, E101, doi: https://doi.org/10.3390/cancers10040101 .

    Article  CAS  Google Scholar 

  15. Ding, L., Gu, H., Xiong, X., Ao, H., Cao, J., Lin, W., Yu, M., Lin, J., and Cui, Q. (2019) MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer, Cells, 8, 1492, doi: https://doi.org/10.3390/cells8121492 .

    Article  CAS  PubMed Central  Google Scholar 

  16. Kaminska, K., Nalejska, E., Kubiak, M., Wojtysiak, J., Zolna, L., Kowalewski, J., and Lewandowska, M. A. (2019) Prognostic and predictive epigenetic biomarkers in oncology, Mol. Diagn. Ther., 23, 83-95, doi: https://doi.org/10.1007/s40291-018-0371-7 .

    Article  CAS  PubMed  Google Scholar 

  17. Gazdzicka, J., Golabek, K., Strzelczyk, J. K., and Ostrowska, Z. (2020) Epigenetic modifications in head and neck cancer, Biochem. Genet., 58, 213-244, doi: https://doi.org/10.1007/s10528-019-09941-1 .

    Article  CAS  PubMed  Google Scholar 

  18. Cozma, A., Fodor, A., Vulturar, R., Sitar-Taut, A. V., Orasan, O. H., Muresan, F., Login, C., and Suharoschi, R. (2019) DNA methylation and micro-RNAs: the most recent and relevant biomarkers in the early diagnosis of hepatocellular carcinoma, Medicina (Kaunas), 55, E607, doi: https://doi.org/10.3390/medicina55090607 .

    Article  Google Scholar 

  19. Begolli, R., Sideris, N., and Giakountis, A. (2019) LncRNAs as chromatin regulators in cancer: from molecular function to clinical potential, Cancers (Basel), 11, E1524, doi: https://doi.org/10.3390/cancers11101524 .

    Article  CAS  Google Scholar 

  20. Cossu, A. M., Mosca, L., Zappavigna, S., Misso, G., Bocchetti, M., De Micco, F., Quagliuolo, L., Porcelli, M., Caraglia, M., and Boccellino, M. (2019) Long non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours, Int. J. Mol. Sci., 20, E3444, doi: https://doi.org/10.3390/ijms20143444 .

    Article  CAS  PubMed  Google Scholar 

  21. Siddiqui, H., Al-Ghafari, A., Choudhry, H., and Al Doghaither, H. (2019) Roles of long non-coding RNAs in colorectal cancer tumorigenesis: a review, Mol. Clin. Oncol., 11, 167-172, doi: https://doi.org/10.3892/mco.2019.1872 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, Y., Su, M., Ou, W., Wang, H., Tian, B., Ma, J., Tang, J., Wu, J., Wu, Z., Wang, W., and Zhou, Y. (2019) Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer, Biomed. Pharmacother., 117, 109192, doi: https://doi.org/10.1016/j.biopha.2019.109192 .

    Article  CAS  PubMed  Google Scholar 

  23. Feinberg, A. P., Koldobskiy, M. A., and Gondor, A. (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression, Nat. Rev. Genet., 17, 284-299, doi: https://doi.org/10.1038/nrg.2016.13 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouras, E., Karakioulaki, M., Bougioukas, K. I., Aivaliotis, M., Tzimagiorgis, G., and Chourdakis, M. (2019) Gene promoter methylation and cancer: an umbrella review, Gene, 710, 333-340, doi: https://doi.org/10.1016/j.gene.2019.06.023 .

    Article  CAS  PubMed  Google Scholar 

  25. Mendelsohn, J., Howley, P. M., Thompson, C. B., Gray, J. W., and Israel, M. A. (2014) The Molecular Basis of Cancer, 4th Edn., Saunders-Elsevier Inc., Philadelphia.

  26. Sang, Y., and Deng, Y. (2019) Current insights into the epigenetic mechanisms of skin cancer, Dermatol. Ther., 32, e12964, doi: https://doi.org/10.1111/dth.12964 .

    Article  PubMed  Google Scholar 

  27. Quintanal-Villalonga, A., and Molina-Pinelo, S. (2019) Epigenetics of lung cancer: a translational perspective, Cell. Oncol. (Dordr), 42, 739-756, doi: https://doi.org/10.1007/s13402-019-00465-9 .

    Article  CAS  Google Scholar 

  28. Costa-Pinheiro, P., Montezuma, D., Henrique, R., and Jeronimo, C. (2015) Diagnostic and prognostic epigenetic biomarkers in cancer, Epigenomics, 7, 1003-1015, doi: https://doi.org/10.2217/epi.15.56 .

    Article  CAS  PubMed  Google Scholar 

  29. Gazdzicka, J., Golabek, K., Strzelczyk, J. K., and Ostrowska, Z. (2020) Epigenetic modifications in head and neck cancer, Biochem. Genet., 58, 213-244, doi: https://doi.org/10.1007/s10528-019-09941-1 .

    Article  CAS  PubMed  Google Scholar 

  30. Porten, S. P. (2018) Epigenetic alterations in bladder cancer, Curr. Urol. Rep., 19, 102, doi: https://doi.org/10.1007/s11934-018-0861-5 .

    Article  PubMed  Google Scholar 

  31. Martinez, V. G., Munera-Maravilla, E., Bernardini, A., Rubio, C., Suarez-Cabrera, C., Segovia, C., Lodewijk, I., Duenas, M., Martinez-Fernandez, M., and Paramio, J. M. (2019) Epigenetics of bladder cancer: where biomarkers and therapeutic targets meet, Front. Genet., 10, 1125, doi: https://doi.org/10.3389/fgene.2019.01125 .

    Article  PubMed  PubMed Central  Google Scholar 

  32. Linehan, W. M., and Ricketts, C. J. (2019) The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications, Nat. Rev. Urol., 16, 539-552, doi: https://doi.org/10.1038/s41585-019-0211-5 .

    Article  CAS  PubMed  Google Scholar 

  33. Mikhailenko, D. S., and Zaletaev, D. V. (2013) Molecular and Genetical Diagnostics in Oncourology, LAP Lambert Academic Publishing, Saarbrucken.

  34. Yamashita, K., Hosoda, K., Nishizawa, N., Katoh, H., and Watanabe, M. (2018) Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment, Cancer Sci., 109, 3695-3706, doi: https://doi.org/10.1111/cas.13812 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhat, S. A., Majid, S., Wani, H. A., and Rashid, S. (2019) Diagnostic utility of epigenetics in breast cancer – a review, Cancer Treat. Res. Commun., 19, 100125, doi: https://doi.org/10.1016/j.ctarc.2019.100125 .

    Article  PubMed  Google Scholar 

  36. Kumar, R., Paul, A. M., Rameshwar, P., and Pillai, M. R. (2019) Epigenetic dysregulation at the crossroad of women’s cancer, Cancers (Basel), 11, E1193, doi: https://doi.org/10.3390/cancers11081193 .

    Article  CAS  Google Scholar 

  37. Ahmed, A. A., and Essa, M. E. (2019) Potential of epigenetic events in human thyroid cancer, Cancer Genet., 239, 13-21, doi: https://doi.org/10.1016/j.cancergen.2019.08.006 .

    Article  CAS  PubMed  Google Scholar 

  38. Ebrahimi, V., Soleimanian, A., Ebrahimi, T., Azargun, R., Yazdani, P., Eyvazi, S., and Tarhriz, V. (2020) Epigenetic modifications in gastric cancer: focus on DNA methylation, Gene, 742, 144577, doi: https://doi.org/10.1016/j.gene.2020.144577 .

    Article  CAS  PubMed  Google Scholar 

  39. Guo, M., Peng, Y., Gao, A., Du, C., and Herman, J. G. (2019) Epigenetic heterogeneity in cancer, Biomark. Res., 7, 23, doi: https://doi.org/10.1186/s40364-019-0174-y .

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paltsev, M. A., and Zaletaev, D. V. (2009) Systems of Genetic and Epigenetic Markers in Diagnostics of Oncologic Disease, Meditsina, Moscow.

  41. Couronne, L., Bastard, C., and Bernard, O. A. (2012) TET2 and DNMT3A mutations in human T-cell lymphoma, N. Engl. J. Med., 366, 95-96, doi: https://doi.org/10.1056/NEJMc1111708 .

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro, A. F., Pratcorona, M., Erpelinck-Verschueren, C., Rockova, V., Sanders, M., Abbas, S., Figueroa, M. E., Zeilemaker, A., Melnick, A., Lowenberg, B., Valk, P. J., and Delwel, R. (2012) Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia, Blood, 119, 5824-5831, doi: https://doi.org/10.1182/blood-2011-07-367961 .

    Article  CAS  PubMed  Google Scholar 

  43. Celik, H., Mallaney, C., Kothari, A., Ostrander, E. L., Eultgen, E., Martens, A., Miller, C. A., Hundal, J., Klco, J. M., and Challen, G. A. (2015) Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation, Blood, 125, 619-628, doi: https://doi.org/10.1182/blood-2014-08-594564 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saito, Y., Kanai, Y., Nakagawa, T., Sakamoto, M., Saito, H., Ishii, H., and Hirohashi, S. (2003) Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas, Int. J. Cancer, 105, 527-532, doi: https://doi.org/10.1002/ijc.11127 .

    Article  CAS  PubMed  Google Scholar 

  45. Ibrahim, A. E., Arends, M. J., Silva, A. L., Wyllie, A. H., Greger, L., Ito, Y., Vowler, S. L., Huang, T. H., Tavare, S., Murrell, A., and Brenton, J. D. (2011) Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression, Gut, 60, 499-508, doi: https://doi.org/10.1136/gut.2010.223602 .

    Article  CAS  PubMed  Google Scholar 

  46. Han, M., Jia, L., Lv, W., Wang, L., and Cui, W. (2019) Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors, Front. Oncol., 9, 194, doi: https://doi.org/10.3389/fonc.2019.00194 .

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siraj, A. K., Pratheeshkumar, P., Parvathareddy, S. K., Bu, R., Masoodi, T., Iqbal, K., Al-Rasheed, M., Al-Dayel, F., Al-Sobhi, S. S., Alzahrani, A. S., Al-Dawish, M., and Al-Kuraya, K. S. (2019) Prognostic significance of DNMT3A alterations in Middle Eastern papillary thyroid carcinoma, Eur. J. Cancer, 117, 133-144, doi: https://doi.org/10.1016/j.ejca.2019.05.025 .

    Article  CAS  PubMed  Google Scholar 

  48. Du, Q., Luu, P. L., Stirzaker, C., and Clark, S. J. (2015) Methyl-CpG-binding domain proteins: readers of the epigenome, Epigenomics, 7, 1051-1073, doi: https://doi.org/10.2217/epi.15.39 .

    Article  CAS  PubMed  Google Scholar 

  49. Xu, J., Zhu, W., Xu, W., Cui, X., Chen, L., Ji, S., Qin, Y., Yao, W., Liu, L., Liu, C., Long, J., Li, M., and Yu, X. (2013) Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair, Int. J. Oncol., 42, 2046-2052, doi: https://doi.org/10.3892/ijo.2013.1901 .

    Article  CAS  PubMed  Google Scholar 

  50. Madzo, J., Liu, H., Rodriguez, A., Vasanthakumar, A., Sundaravel, S., Caces, D. B., Looney, T. J., Zhang, L., Lepore, J. B., Macrae, T., Duszynski, R., Shih, A. H., Song, C. X., Yu, M., Yu, Y., Grossman, R., Raumann, B., Verma, A., He, C., Levine, R. L., Lavelle, D., Lahn, B. T., Wickrema, A., and Godley, L. A. (2014) Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis, Cell Rep., 6, 231-244, doi: https://doi.org/10.1016/j.celrep.2013.11.044 .

    Article  CAS  PubMed  Google Scholar 

  51. Kaasinen, E., Kuismin, O., Rajamaki, K., Ristolainen, H., Aavikko, M., et al. (2019) Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans, Nat. Commun., 10, 1252, doi: https://doi.org/10.1038/s41467-019-09198-7 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng, Y., Li, X., Cassady, K., Zou, Z., and Zhang, X. (2019) TET2 function in hematopoietic malignancies, immune regulation, and DNA repair, Front. Oncol., 9, 210, doi: https://doi.org/10.3389/fonc.2019.00210 .

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chang, Y. S., Huang, H. D., Yeh, K. T., and Chang, J. G. (2016) Genetic alterations in endometrial cancer by targeted next-generation sequencing, Exp. Mol. Pathol., 100, 8-12, doi: https://doi.org/10.1016/j.yexmp.2015.11.026 .

    Article  CAS  PubMed  Google Scholar 

  54. Pivovarcikova, K., Agaimy, A., Martinek, P., Alaghehbandan, R., Perez-Montiel, D., Alvarado-Cabrero, I., Rogala, J., Kuroda, N., Rychly, B., Gasparov, S., Michalova, K., Michal, M., Hora, M., Pitra, T., Tuckova, I., Laciok, S., Mareckova, J., and Hes, O. (2019) Primary renal well-differentiated neuroendocrine tumour (carcinoid): next-generation sequencing study of 11 cases, Histopathology, 75, 104-117, doi: https://doi.org/10.1111/his.13856 .

    Article  PubMed  Google Scholar 

  55. Kim, S. I., Lee, J. W., Lee, M., Kim, H. S., Chung, H. H., Kim, J. W., Park, N. H., Song, Y. S., and Seo, J. S. (2018) Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing, Gynecol. Oncol., 148, 375-382, doi: https://doi.org/10.1016/j.ygyno.2017.12.005 .

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, X., and Li, S. (2018) TET2 inhibits tumorigenesis of breast cancer cells by regulating caspase-4, Sci. Rep., 8, 16167, doi: https://doi.org/10.1038/s41598-018-34462-z .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barazeghi, E., Gill, A. J., Sidhu, S., Norlen, O., Dina, R., Palazzo, F. F., Hellman, P., Stalberg, P., and Westin, G. (2017) A role for TET2 in parathyroid carcinoma, Endocr. Relat. Cancer, 24, 329-338, doi: https://doi.org/10.1530/ERC-17-0009 .

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Y. P., Lv, L., Liu, Y., Smith, M. D., Li, W. C., Tan, X. M., Cheng, M., Li, Z., Bovino, M., Aube, J., and Xiong, Y. (2019) Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy, J. Clin. Invest., 130, 4316-4331, doi: https://doi.org/10.1172/JCI129317 .

    Article  Google Scholar 

  59. Jin, Y., Shao, Y., Shi, X., Lou, G., Zhang, Y., Wu, X., Tong, X., and Yu, X. (2016) Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing, Oncotarget, 7, 61755-61763, doi: https://doi.org/10.18632/oncotarget.11237 .

    Article  PubMed  PubMed Central  Google Scholar 

  60. Elgendy, M., Fusco, J. P., Segura, V., Lozano, M. D., Minucci, S., et al. (2019) Identification of mutations associated with acquired resistance to sunitinib in renal cell cancer, Int. J. Cancer, 145, 1991-2001, doi: https://doi.org/10.1002/ijc.32256 .

    Article  CAS  PubMed  Google Scholar 

  61. Coombs, C. C., Gillis, N. K., Tan, X., Berg, J. S., Ball, M., et al. (2018) Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays, Clin. Cancer Res., 24, 5918-5924, doi: https://doi.org/10.1158/1078-0432.CCR-18-1201 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drake, T. M., and Soreide, K. (2019) Cancer epigenetics in solid organ tumours: a primer for surgical oncologists, Eur. J. Surg. Oncol., 45, 736-746, doi: https://doi.org/10.1016/j.ejso.2019.02.005 .

    Article  PubMed  Google Scholar 

  63. Zhao, Z., and Shilatifard, A. (2019) Epigenetic modifications of histones in cancer, Genome Biol., 20, 245, doi: https://doi.org/10.1186/s13059-019-1870-5 .

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee, J. J., Sholl, L. M., Lindeman, N. I., Granter, S. R., Laga, A. C., et al. (2015) Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas, Clin. Epigenetics, 7, 59, doi: https://doi.org/10.1186/s13148-015-0091-3 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beguelin, W., Popovic, R., Teater, M., Jiang, Y., Bunting, K. L., et al. (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation, Cancer Cell, 23, 677-692, doi: https://doi.org/10.1016/j.ccr.2013.04.011 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewis, P. W., Muller, M. M., Koletsky, M. S., Cordero, F., Lin, S., Banaszynski, L. A., Garcia, B. A., Muir, T. W., Becher, O. J., and Allis, C. D. (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma, Science, 340, 857-861, doi: https://doi.org/10.1126/science.1232245 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Donaldson-Collier, M. C., Sungalee, S., Zufferey, M., Tavernari, D., Katanayeva, N., Battistello, E., Mina, M., Douglass, K. M., Rey, T., Raynaud, F., Manley, S., Ciriello, G., and Oricchio, E. (2019) EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains, Nat. Genet., 51, 517-528, doi: https://doi.org/10.1038/s41588-018-0338-y .

    Article  CAS  PubMed  Google Scholar 

  68. Baharudin, R., Tieng, F. Y., Lee, L. H., and Ab Mutalib, N. S. (2020) Epigenetics of SFRP1: the dual roles in human cancers, Cancers (Basel), 12, E445, doi: https://doi.org/10.3390/cancers12020445 .

    Article  CAS  Google Scholar 

  69. Ding, B., Yan, L., Zhang, Y., Wang, Z., Zhang, Y., Xia, D., Ye, Z., and Xu, H. (2019) Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer, FEBS Open Bio, 9, 693-706, doi: https://doi.org/10.1002/2211-5463.12600 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, J., Tao, X., Shen, J., Liu, L., Zhao, Q., Ma, Y., Tao, Z., Zhang, Y., Ding, B., and Xiao, Z. (2019) The molecular landscape of histone lysine methyltransferases and demethylases in non-small cell lung cancer, Int. J. Med. Sci., 16, 922-930, doi: https://doi.org/10.7150/ijms.34322 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gale, M., Sayegh, J., Cao, J., Norcia, M., Gareiss, P., Hoyer, D., Merkel, J. S., and Yan, Q. (2016) Screen-identified selective inhibitor of lysine demethylase 5A blocks cancer cell growth and drug resistance, Oncotarget, 7, 39931-39944, doi: https://doi.org/10.18632/oncotarget.9539 .

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bemanian, V., Noone, J. C., Sauer, T., Touma, J., Vetvik, K., Soderberg-Naucler, C., Lindstrom, J. C., Bukholm, I. R., Kristensen, V. N., and Geisler, J. (2018) Somatic EP300-G211S mutations are associated with overall somatic mutational patterns and breast cancer specific survival in triple-negative breast cancer, Breast Cancer Res. Treat., 172, 339-351, doi: https://doi.org/10.1007/s10549-018-4927-3 .

    Article  CAS  PubMed  Google Scholar 

  73. Duex, J. E., Swain, K. E., Dancik, G. M., Paucek, R. D., Owens, C., Churchill, M. E., and Theodorescu, D. (2018) Functional impact of chromatin remodeling gene mutations and predictive signature for therapeutic response in bladder cancer, Mol. Cancer Res., 16, 69-77, doi: https://doi.org/10.1158/1541-7786.MCR-17-0260 .

    Article  CAS  PubMed  Google Scholar 

  74. M’Gagne, L., Boulay, K., Topisirovic, I., Huot, M. E., and Mallette, F. A. (2017) Oncogenic activities of IDH1/2 mutations: from epigenetics to cellular signaling, Trends Cell Biol., 27, 738-752, doi: https://doi.org/10.1016/j.tcb.2017.06.002 .

    Article  CAS  Google Scholar 

  75. Deng, L., Xiong, P., Luo, Y., Bu, X., Qian, S., Zhong, W., and Lv, S. (2018) Association between IDH1/2 mutations and brain glioma grade, Oncol. Lett., 16, 5405-5409, doi: https://doi.org/10.3892/ol.2018.9317 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan, D., and Lynch, H. T. (2013) Principles of Molecular Diagnostics and Personalized Cancer Medicine, Lippincott Wilkins/Wolters Kluwer, Philadelphia.

  77. Wan, Y. C., Liu, J., and Chan, K. M. (2018) Histone H3 mutations in cancer, Curr. Pharmacol. Rep., 4, 292-300, doi: https://doi.org/10.1007/s40495-018-0141-6 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klein, B. J., Krajewski, K., Restrepo, S., Lewis, P. W., Strahl, B. D., and Kutateladze, T. G. (2018) Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers, Epigenetics, 13, 683-692, doi: https://doi.org/10.1080/15592294.2018.1503491 .

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jia, F., Teer, J. K., Knepper, T. C., Lee, J. K., Zhou, H. H., He, Y. J., and McLeod, H. L. (2017) Discordance of somatic mutations between Asian and Caucasian patient populations with gastric cancer, Mol. Diagn. Ther., 21, 179-185, doi: https://doi.org/10.1007/s40291-016-0250-z .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Masliah-Planchon, J., Bieche, I., Guinebretiere, J. M., Bourdeaut, F., and Delattre, O. (2015) SWI/SNF chromatin remodeling and human malignancies, Annu. Rev. Pathol., 10, 145-171, doi: https://doi.org/10.1146/annurev-pathol-012414-040445 .

    Article  CAS  PubMed  Google Scholar 

  81. Mikhailenko, D. S., Teleshova, M. V., Perepechin, D. V., Efremov, G. D., Kachanov, D. Y., Raikina, E. V., Bobrynina, V. O., Lavrina, S. G., Mitrofanova, A. M., Konovalov, D. M., Varfolomeeva, S. P., and Alekseev, B. Y. (2017) Germline nonsense mutations in the SMARCB1 gene in Russian patients with rhabdoid renal tumors, Oncourologiya, 13, 14-19, doi: https://doi.org/10.17650/1726-9776-2017-13-2-14-19 .

    Article  Google Scholar 

  82. Mikhailenko, D. S., Teleshova, M. V., Efremov, G. D., and Alekseev, B. Y. (2016) Mutations of the SMARCB1 gene in tumors with different localization, Almanakh Klin. Med., 44, 558-567, doi: https://doi.org/10.18786/2072-0505-2016-44-5-558-567 .

    Article  Google Scholar 

  83. Agaimy, A., Daum, O., Markl, B., Lichtmannegger, I., Michal, M., and Hartmann, A. (2016) SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2, Am. J. Surg. Pathol., 40, 544-553, doi: https://doi.org/10.1097/PAS.0000000000000554 .

    Article  PubMed  Google Scholar 

  84. Wang, J., Xi, Z., Xi, J., Zhang, H., Li, J., Xia, Y., and Yi, Y. (2018) Somatic mutations in renal cell carcinomas from Chinese patients revealed by whole exome sequencing, Cancer Cell Int., 18, 159, doi: https://doi.org/10.1186/s12935-018-0661-5 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hogner, A., Krause, H., Jandrig, B., Kasim, M., Fuller, T. F., Schostak, M., Erbersdobler, A., Patzak, A., and Kilic, E. (2018) PBRM1 and VHL expression correlate in human clear cell renal cell carcinoma with differential association with patient’s overall survival, Urol. Oncol., 36, 94, doi: https://doi.org/10.1016/j.urolonc.2017.10.027 .

    Article  CAS  PubMed  Google Scholar 

  86. Wu, J. N., and Roberts, C. W. (2013) ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov., 3, 35-43, doi: https://doi.org/10.1158/2159-8290.CD-12-0361 .

    Article  CAS  PubMed  Google Scholar 

  87. Carril-Ajuria, L., Santos, M., Roldan-Romero, J. M., Rodriguez-Antona, C., and de Velasco, G. (2019) Prognostic and predictive value of PBRM1 in clear cell renal cell carcinoma, Cancers (Basel), 12, E16, doi: https://doi.org/10.3390/cancers12010016 .

    Article  CAS  Google Scholar 

  88. Katona, B. W., and Rustgi, A. K. (2017) Gastric cancer genomics: advances and future directions, Cell. Mol. Gastroenterol. Hepatol., 3, 211-217, doi: https://doi.org/10.1016/j.jcmgh.2017.01.003 .

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yamamoto, H., Watanabe, Y., Maehata, T., Morita, R., Yoshida, Y., Oikawa, R., Ishigooka, S., Ozawa, S., Matsuo, Y., Hosoya, K., Yamashita, M., Taniguchi, H., Nosho, K., Suzuki, H., Yasuda, H., Shinomura, Y., and Itoh, F. (2014) An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa, World J. Gastroenterol., 20, 3927-3937, doi: https://doi.org/10.3748/wjg.v20.i14.3927 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, L., Li, M., Jiang, Z., and Wang, X. (2019) ARID1A mutations are associated with increased immune activity in gastrointestinal cancer, Cells, 8, E678, doi: https://doi.org/10.3390/cells8070678 .

    Article  CAS  PubMed  Google Scholar 

  91. Wang, Y., Hoang, L., Ji, J. X., and Huntsman, D. G. (2020) SWI/SNF complex mutations in gynecologic cancers: molecular mechanisms and models, Annu. Rev. Pathol., 15, 467-492, doi: https://doi.org/10.1146/annurev-pathmechdis-012418-012917 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., Han, J., and Wei, X. (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials, Signal Transduct. Target. Ther., 4, 62, doi: https://doi.org/10.1038/s41392-019-0095-0 .

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chabanon, R. M., Morel, D., and Postel-Vinay, S. (2020) Exploiting epigenetic vulnerabilities in solid tumors: novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers, Semin. Cancer Biol., 61, 180-198, doi: https://doi.org/10.1016/j.semcancer.2019.09.018 .

    Article  CAS  PubMed  Google Scholar 

  94. Bohl, S. R., Bullinger, L., and Rucker, F. G. (2018) Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia, Expert Rev. Hematol., 11, 361-371, doi: https://doi.org/10.1080/17474086.2018.1453802 .

    Article  CAS  PubMed  Google Scholar 

  95. Lee, V., Wang, J., Zahurak, M., Gootjes, E., Verheul, H. M., Parkinson, R., Kerner, Z., Sharma, A., Rosner, G., De Jesus-Acosta, A., Laheru, D., Le, D. T., Oganesian, A., Lilly, E., Brown, T., Jones, P., Baylin, S., Ahuja, N., and Azad, N. (2018) A phase I trial of a guadecitabine (SGI-110) and irinotecan in metastatic colorectal cancer patients previously exposed to irinotecan, Clin. Cancer Res., 24, 6160-6167, doi: https://doi.org/10.1158/1078-0432.CCR-18-0421 .

    Article  PubMed  Google Scholar 

  96. Giri, A. K., and Aittokallio, T. (2019) DNMT inhibitors increase methylation in the cancer genome, Front. Pharmacol., 10, 385, doi: https://doi.org/10.3389/fphar.2019.00385 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loo Yau, H., Ettayebi, I., and De Carvalho, D. D. (2019) The cancer epigenome: exploiting its vulnerabilities for immunotherapy, Trends Cell Biol., 29, 31-43, doi: https://doi.org/10.1016/j.tcb.2018.07.006 .

    Article  CAS  PubMed  Google Scholar 

  98. Berdasco, M., and Esteller, M. (2019) Clinical epigenetics: seizing opportunities for translation, Nat. Rev. Genet., 20, 109-127, doi: https://doi.org/10.1038/s41576-018-0074-2 .

    Article  CAS  PubMed  Google Scholar 

  99. Park, J. W., and Han, J. W. (2019) Targeting epigenetics for cancer therapy, Arch. Pharm. Res., 42, 159-170, doi: https://doi.org/10.1007/s12272-019-01126-z .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (project No. 18-29-09020) and by the State Budget Project of the Ministry of Science and Education of the Russian Federation for 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Mikhaylenko.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemtsova, M., Mikhaylenko, D., Kuznetsova, E. et al. Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. Biochemistry Moscow 85, 735–748 (2020). https://doi.org/10.1134/S0006297920070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920070020

Keywords

Navigation