Skip to main content
Log in

Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Maintenance of non-equilibrium Na+ and K+ distribution between cytoplasm and extracellular medium suggests existence of sensors responding with conformational transitions to the changes of these monovalent cations’ intracellular concentration. Molecular nature of monovalent cation sensors has been established in Na,K-ATPase, G-protein-coupled receptors, and heat shock proteins structural studies. Recently, it was found that changes in Na+ and K+ intracellular concentration are the key factors in the transcription and translation control, respectively. In this review, we summarize results of these studies and discuss physiological and pathophysiological significance of \({\rm{Na}}_{\rm{i}}^+,{\rm{K}}_{\rm{i}}^+\)-dependent gene expression regulation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

CaMK:

Ca2+/calmodulin-dependent protein kinase

COX-2:

cyclooxygenase type 2

CREB:

cyclic AMP response element-binding protein

CTS:

cardiotonic steroids

EPS:

electrical pulse stimulation

ERG:

early response gene

GPCR:

G-protein-coupled receptor

HIF-1:

hypoxia-inducible factor 1

HRE:

HIF-response element

HSP:

heat shock protein

NaRE:

identified Na+ response element, gene transcription regulator

NaREB:

unidentified [Na+]i sensor, NaRE activator

NBD:

nucleotidebinding domain

NFAT:

nuclear factor of activated T cells

NFκB:

nuclear factor kappa-light chain enhancer of activated B cells

NMDA:

N-methyl-D-aspartate

SBD:

substrate-binding domain

SERCA:

skeletal muscle sarcoplasmic/endoplasmic-reticulum Ca-ATPase

SMC:

smooth muscle cell

UTR:

untranslated mRNA region

References

  1. Sutherland, E. W. (1972) Studies on the mechanism of hormone action, Science, 177, 401–408.

    Article  CAS  PubMed  Google Scholar 

  2. Robison, G. A., Butcher, R. W., and Sutherland, E. W. (1971) Cyclic AMP, Academic Press, New York.

    Google Scholar 

  3. Lincoln, T. M., and Cornwell, T. L. (1993) Intracellular cyclic GMP receptor proteins, FASEB J., 7, 328–338.

    Article  CAS  PubMed  Google Scholar 

  4. Carafoli, E. (2002) Calcium signaling: a tale for all seasons, Proc. Natl. Acad. Sci. USA, 99, 1115–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berridge, M. J. (1993) Inositol triphosphate and calcium signalling, Nature, 361, 315–325.

    Article  CAS  PubMed  Google Scholar 

  6. Grinstein, S., Smith, J. D., Benedict, S. H., and Gelfand, E. W. (1989) Activation of sodium-hydrogen exchange by mitogens, Curr. Topics Membr. Transport, 34, 331–343.

    Article  Google Scholar 

  7. Prasad, K. V. S., Severini, A., and Kaplan, J. G. (1987) Sodium ion fluxes in proliferating lymphocytes: an early component of mitogenic signal, Arch. Biochem. Biophys., 252, 515–525.

    Article  CAS  PubMed  Google Scholar 

  8. Wakabayashi, S., Shigekawa, M., and Poyssegur, J. (1997) Molecular physiology of vertebrate Na+/H+ exchanger, Physiol. Rev., 77, 51–74.

    Article  CAS  PubMed  Google Scholar 

  9. Marakhova, I. I., Vereninov, A. A., Toropova, F. V., and Vinogradova, T A. (1998) Na,K-ATPase pump in activated human lymphocytes: on the mechanisms of rapid and long-term increase in K influxes during the initiation of phytohemagglutinin-induced proliferation, Biochim. Biophys. Acta, 1368, 61–72.

    Article  CAS  PubMed  Google Scholar 

  10. Burns, C. P., and Rozengurt, E. (1984) Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+, J. Cell Biol., 98, 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  11. Hamet, P., Orlov, S. N., DeBlois, D., Sun, Y., Kren, V., and Tremblay, J. (2004) Angiotensin As a Cytokine Implicated in Accelerated Cellular Turnover, Springer Verlag, N. Y., pp. 71–98.

    Google Scholar 

  12. Bennekou, P., and Christophersen, P. (2003) Ion Channels, Springer, Berlin, pp. 139–152.

    Google Scholar 

  13. Schneider, J., Nicolay, J. P., Foller, M., Wieder, T., and Lang, F. (2007) Suicidal erythrocyte death following cellular K+ loss, Cell Physiol. Biochem., 20, 35–44.

    Article  CAS  PubMed  Google Scholar 

  14. Rose, C. R., and Konnerth, A. (2001) NMDA-receptormediated Na+ signals in spines and dendrites, J. Neurosci., 21, 4207–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verkhratsky, A., Noda, M., Parpura, V., and Kirischuk, S. (2013) Sodium fluxes and astroglial function, Adv. Exp. Med. Biol., 961, 295–305.

    Article  CAS  PubMed  Google Scholar 

  16. Koltsova, S. V., Shilov, B., Burulina, J. G., Akimova, O. A., Haloui, M., Kapilevich, L. V., Gusakova, S. V., Tremblay, J., Hamet, P., and Orlov, S. N. (2014) Transcriptomic changes triggered by hypoxia: evidence for HIF-1a -independent, [Na+]i/[K+]i-mediated excitation-transcription coupling, PLoS One, 9, e110597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orlov, S. N., Birulina, Y. G., Smaglii, L. V., and Gusakova, S. V. (2017) Vascular smooth muscle as an oxygen sensor: role of elevation of the [Na+]i/[K+]i, in Hypoxia and Human Diseases (Zheng, J., and Zhou, C., eds.) IntechOpen, Vol. 4, pp. 73–90; doi: https://doi.org/10.5772/65384.

  18. Kapilevich, L. V., Kironenko, T. A., Zaharova, A. N., Kotelevtsev, Yu., Dulin, N. O., and Orlov, S. N. (2015) Skeletal muscle as an endicrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling, Genes Dis., 2, 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orlov, S. N., and Hamet, P. (2006) Intracellular monovalent ions as second messengers, J. Membr. Biol., 210, 161–172.

    Article  CAS  PubMed  Google Scholar 

  20. Shekarabi, M., Zhang, J., Khanna, A. R., Ellison, D. H., Delpire, E., and Kahle, K. T. (2017) WNK kinase signaling in ion homeostasis and human disease, Cell Metab., 25, 285–299.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, C. S., and Mongin, A. A. (2019) The signaling role for chloride in the bidirectional communication between neurons and astrocytes, Neurosci. Lett., 689, 33–44.

    Article  CAS  PubMed  Google Scholar 

  22. Page, M. J., and Di Cera, E. (2006) Role of Na+ and K+ in enzyme function, Physiol. Rev., 86, 1049–1092.

    Article  CAS  PubMed  Google Scholar 

  23. Linden, D. J., Smeyne, M., and Connor, J. A. (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions, Neuron, 11, 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  24. Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., and Toyoshima, C. (2013) Crystal structure of Na+-bound Na+,K+-ATPase preceding the E1P state, Nature, 502, 201–206.

    Article  CAS  PubMed  Google Scholar 

  25. Sweadner, K. J., and Donnet, C. (2001) Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum, Biochem. J., 356, 685–704; doi: https://doi.org/10.1042/0264-6021:3560685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toyoshima, C., Kanai, R., and Cornelius, F. (2011) First crystal structure of Na+,K+-ATPase: new light on the oldest ion pump, Structure, 19, 1732–1738; doi: https://doi.org/10.1016/j.str.2011.10.016.

    Article  CAS  PubMed  Google Scholar 

  27. Pert, C. B., Pasternak, G., and Snyder, S. H. (1973) Opiate agonists and antagonists discriminated by receptor binding in brain, Science, 182, 1359–1361.

    Article  CAS  PubMed  Google Scholar 

  28. Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., and Stevens, R. C. (2014) Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strasser, A., Wittmann, H.-J., Schneider, E. H., and Seifert, R. (2015) Modulation of GPCRs by mnovalent cations and anions, Naunyn Schmied. Arch. Pharmacol., 388, 363–380; doi: https://doi.org/10.1007/s00210-014-1073-2.

    Article  CAS  Google Scholar 

  30. Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., Han, G. W., Roth, C. B., Heitman, L. H., Ijzerman, A. P., Cherezov, V., and Stevens, R. C. (2012) Structural basis for allosteric regulation of GPCRs by sodium ions, Science, 337, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., Roth, B. L., and Stevens, R. C. (2014) Molecular control of d-opioid receptor signalling, Nature, 506, 191–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierrez-de-Teran, H., Massink, A., Rodriguez, D., Liu, W., Han, G. W., Joseph, J. S., Katritch, I., Heitman, L. H., Xia, L., Ijzerman, A. P., Cherezov, V., Katritch, V., and Stevens, R. C. (2013) The role of sodium ion-binding site in the allosteric modulation of the A2A adenosine G protein-coupled receptor, Structure, 21, 2175–2185.

    Article  CAS  PubMed  Google Scholar 

  33. O’Brien, M.-C., and McKay, D. B. (1995) How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity, J. Biol. Chem., 270, 2247–2250.

    Article  PubMed  Google Scholar 

  34. Arakawa, A., Handa, N., Shirouzu, M., and Yokoyama, S. (2011) Biochemical and structural studies on the high affinity of Hsp70 for ADP, Protein Sci., 20, 1367–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Orlov, S. N. (1987) Clamodulin: General Problems of Physocochemical Biology [in Russian], VINITI, Moscow, Vol. 8, pp. 5–212.

    Google Scholar 

  36. Permyakov, E. A., Uversky, V. N., and Permyakov, S. E. (2017) Parvalbumin as a pleomorphic protein, Curr. Protein Pept. Sci., 18, 780–794.

    Article  CAS  PubMed  Google Scholar 

  37. Heizmann, C. W., and Hunziker, W. (1991) Intracellular calcium-binding proteins: more sites than insights, Trends Biochem. Sci., 16, 98–103.

    Article  CAS  PubMed  Google Scholar 

  38. Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD), J. Physiol., 532, 3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Orlov, S. N., Platonova, A. A., Hamet, P., and Grygorczyk, R. (2013) Cell volume and monovalent ion transporters: their role in the triggereing and progression of the cell death machinery, Am. J. Physiol. Cell Physiol., 305, C361–C372.

    Article  CAS  PubMed  Google Scholar 

  40. Orlov, S. N., Thorin-Trescases, N., Kotelevtsev, S. V., Tremblay, J., and Hamet, P. (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3, J. Biol. Chem., 274, 16545–16552.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, X., Jiang, G., Zhao, A., Bondeva, T., Hirzel, P., and Balla, T. (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells, Biochem. Biophys. Res. Commun., 285, 46–51.

    Article  CAS  PubMed  Google Scholar 

  42. Isaev, N. K., Stelmashook, E. V., Halle, A., Harms, C., Lautenschlager, M., Weih, M., Dirnagl, U., Victorov, I. V., and Zorov, D. B. (2000) Inhibition of Na+,K+-ATPase activity in cultured cerebellar granule cells prevents the onset of apoptosis induced by low potassium, Neurosci. Lett., 283, 41–44.

    Article  CAS  PubMed  Google Scholar 

  43. Trevisi, L., Visentin, B., Cusinato, F., Pighin, I., and Luciani, S. (2004) Antiapoptotic effect of ouabain on human umbilical endothelial cells, Biochem. Biophys. Res. Commun., 321, 716–721.

    Article  CAS  PubMed  Google Scholar 

  44. Orlov, S. N., Taurin, S., Tremblay, J., and Hamet, P. (2001) Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling, J. Hypertens., 19, 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  45. Taurin, S., Seyrantepe, V., Orlov, S. N., Tremblay, T.-L., Thibaut, P., Bennett, M. R., Hamet, P., and Pshezhetsky, A. V. (2002) Proteome analysis and functional expression identify mortalin as an anti-apoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells, Circ. Res., 91, 915–922.

    Article  CAS  PubMed  Google Scholar 

  46. Orlov, S. N., and Hamet, P. (2004) Apoptosis vs oncosis: role of cell volume and intracellular monovalent cations, Adv. Exp. Med. Biol., 559, 219–233.

    Article  CAS  PubMed  Google Scholar 

  47. Taurin, S., Dulin, N. O., Pchejetski, D., Grygorczyk, R., Tremblay, J., Hamet, P., and Orlov, S. N. (2002) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism, J. Physiol., 543, 835–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orlov, S. N., Taurin, S., Thorin-Trescases, N., Dulin, N. O., Tremblay, J., and Hamet, P. (2000) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis, Hypertension, 35, 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  49. Schoner, W., and Scheiner-Bobis, G. (2007) Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth, Am. J. Physiol. Cell Physiol., 293, C509–C536.

    Article  CAS  PubMed  Google Scholar 

  50. Orlov, S. N., Klimanova, E. A., Tverskoi, A. M., Vladychenskaya, E. A., Smolyaninova, L. V., and Lopina, O. D. (2017) Na+,K+-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts, Molecules, 22, E635; doi: https://doi.org/10.3390/molecules22040635.

    Article  CAS  PubMed  Google Scholar 

  51. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., Hamet, P., and Orlov, S. N. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca 2+i -independent excitation-transcription coupling, PLoS One, 7, e38032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klimanova, E. A., Sidorenko, S. V., Smolyaninova, L. V., Kapilevich, L. V., Gusakova, S. V., Lopina, O. D., and Orlov, S. N. (2019) Ubiquitous and cell type-specific transciptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: physiological and pathophysiological implications, Curr. Top. Membr., 83, 107–149; doi: https://doi.org/10.1016/bs.ctm.2019.01.006.

    Article  PubMed  Google Scholar 

  53. Orlov, S. N., Thorin-Trescases, N., Pchejetski, D., Taurin, S., Farhat, N., Tremblay, J., Thorin, E., and Hamet, P. (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i, Pflugers Arch., 448, 335–345.

    Article  CAS  PubMed  Google Scholar 

  54. Alonso, M. T., and Garcia-Sancho, J. (2011) Nuclear Ca2+ signalling, Cell Calcium, 49, 280–289.

    Article  CAS  PubMed  Google Scholar 

  55. Taurin, S., Hamet, P., and Orlov, S. N. (2003) Na/K pump and intracellular monovalent cations: novel mechanism of excitation-transcription coupling involved in inhibition of apoptosis, Mol. Biol., 37, 371–381.

    Article  CAS  Google Scholar 

  56. Santana, L. F. (2008) NFAT-dependent excitation-transcription coupling in heart, Circ. Res., 103, 681–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gundersen, K. (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise, Biol. Rev., 86, 564–600.

    Article  PubMed  Google Scholar 

  58. La, J., Reed, E. B., Koltsova, S. V., Akimova, O. A., Hamanaka, R. B., Mutlu, R. B., Orlov, S. N., and Dulin, N. O. (2016) Regulation of myofibroblast differentiation by cardiac glycosides, Am. J. Physiol. Lung Cell. Mol. Physiol., 310, L815–L823.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Smolyaninova, L. V., Koltsova, S. V., Sidorenko, S. V., and Orlov, S. N. (2017) Augemented gene expression triggered by Na+,K+-ATPase inhibition: role of Ca2+-mediated and — independent excitation-transcription coupling, Cell Calcium, 68, 5–13.

    Article  CAS  PubMed  Google Scholar 

  60. Orlov, S. N., Aksentsev, S. L., and Kotelevtsev, S. V. (2005) Extracellular calcium is required for the maintenance of plasma membrane integrity in nucleated cells, Cell Calcium, 38, 53–57.

    Article  CAS  PubMed  Google Scholar 

  61. Koltsova, S. V., Tremblay, J., Hamet, P., and Orlov, S. N. (2015) Transcriptomic changes in Ca2+-depleted cells: role of elevated intracellular [Na+]/[K+] ratio, Cell Calcium, 58, 317–324.

    Article  CAS  PubMed  Google Scholar 

  62. Matt, T., Martinez-Yamout, M. A., Dyson, H. J., and Wright, P. E. (2004) The CBP/p300 XAZ1 domain in its native state is not a binding patner of MDM2, Biochem. J., 381, 685–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krishtal, O. A., Pidoplichko, V. I., and Shakhovalov, Y. A. (1981) Conductance of the calcium channel in the membrane of snail neurones, J. Physiol., 301, 423–434.

    Article  Google Scholar 

  64. Nakagawa, Y., Rivera, V., and Larner, A. C. (1992) A role for Na/K-ATPase in the control of human c-fos and c-jun transcription, J. Biol. Chem., 267, 8785–8788.

    CAS  PubMed  Google Scholar 

  65. Haloui, M., Taurin, S., Akimova, O. A., Guo, D.-F., Tremblay, J., Dulin, N. O., Hamet, P., and Orlov, S. N. (2007) Na 2+i -induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements, FEBS J., 274, 3257–3267.

    Article  CAS  Google Scholar 

  66. Ono, Y., Ojimam, K., Torii, F., Takaya, E., Doi, N., Nakagawa, K., Hata, S., Abe, K., and Sorimachi, H. (2010) Skeletal muscle-specific calpain is an intracellular Na+-dependent protease, J. Biol. Chem., 285, 22986–22998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herrera, R. E., Nordheim, A., and Stewart, A. F. (1997) Chromatin structure analysis of the human c-Fos promoter reveals a centrally positioned nucleosome, Chromosoma, 106, 284–292.

    Article  CAS  PubMed  Google Scholar 

  68. Chinsomboon, J., Ruas, J., Gupta, R. K., Thom, R., Shoag, J., Rowe, G. C., Sawada, N., Raghuram, S., and Arany, Z. (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle, Proc. Natl. Acad. Sci. USA, 106, 21401–21405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Soyal, S. M., Felder, T. K., Auer, S., Hahne, P., Oberkofler, H., Witting, A., Paulmichl, M., Landwehrmeyer, G. B., Weydt, P., and Patsch, W. (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset, Hum. Mol. Genet., 21, 3461–3470.

    Article  CAS  PubMed  Google Scholar 

  70. Mechti, N., Piechaczyk, M., Blanchard, J. M., Jeanteur, P., and Lebleu, B. (1991) Sequence requirements for premature transcription arrest within the first intron of the mouse c-fos gene, Mol. Cell. Biol., 11, 2832–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coulon, V., Veyrune, J.-L., Tourkine, N., Vie, A., Hipskind, R. A., and Blanchard, J.-M. (1999) A novel calcium signaling pathway targets the c-fos intragenic transcriptional pausing site, J. Biol. Chem., 274, 30439–30446.

    Article  CAS  PubMed  Google Scholar 

  72. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nature Rev. Genet., 8, 104–115.

    Article  CAS  PubMed  Google Scholar 

  73. Trinkle-Mulchany, L., and Lamond, A. I. (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment, FEBS Lett., 582, 1960–1970.

    Article  CAS  Google Scholar 

  74. Maharana, S., Sharma, D., Shi, X., and Shivashankar, G. V. (2012) Dynamic organization of transcription comparments is dependent in functional nuclear architecture, Biophys. J., 103, 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dolinnaya, N. G., Ogloblina, A. M., and Yakubovskaya, M. G. (2016) Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: overview 50 years after their discovery, Biochemistry (Moscow), 81, 1602–1649.

    Article  CAS  Google Scholar 

  76. Lubin, M., and Ennis, H. L. (1964) On the role of intracellular potassium in protein synthesis, Biochim. Biophys. Acta, 80, 614–631.

    CAS  PubMed  Google Scholar 

  77. Ledbetter, M. L. S., and Lubin, M. (1977) Control of protein synthesis in human fibroblasts by intracellular potassium, Exp. Cell Res., 105, 223–236.

    Article  CAS  PubMed  Google Scholar 

  78. Amarelle, L., Katzen, J., Shigemura, M., Welch, L. C., Cajigas, H., Peteranderl, C., Celli, D., Herold, S., Lecuona, E., and Sznajder, J. L. (2019) Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translation machinery, Am. J. Physiol. Lung Cell. Mol. Physiol., 316, L1094–L1106; doi: https://doi.org/10.1152/ajplung.00173.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cahn, F., and Lubin, M. (1978) Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes and reticulocyte lysate, J. Biol. Chem., 253, 7798–7803.

    CAS  PubMed  Google Scholar 

  80. Austin, J., and First, E. A. (2002) Potassium functionally replaced the second lysine of the KMSKS signaure sequence in human tyrosyl-tRNA synthetase, J. Biol. Chem., 277, 20243–20248.

    Article  CAS  PubMed  Google Scholar 

  81. Jennings, M. D., and Pavitt, G. D. (2010) eIF5 is a dual function GAP and GDI for eukariotic translational control, Small GTPases, 1, 118–123.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cao, J., He, L., Lin, G., Hu, C., Dong, R., Zhang, J., Zhu, H., Hu, Y., Wagner, C. R., He, Q., and Yang, B. (2014) Cap-dependent translation initiation factor, eIF4E, is the target for ouabain-mediated inhibition of HIF-1a, Biochem. Pharmacol., 89, 20–30.

    Article  CAS  PubMed  Google Scholar 

  83. Klimanova, E. A., Tverskoi, A. M., Koltsova, S. V., Sidorenko, S. V., Lopina, O. D., Tremblay, J., Hamet, P., Kapilevich, L. V., and Orlov, S. N. (2017) Time- and dose-dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis, Sci. Rep., 7, 45403; doi: https://doi.org/10.1038/srep45403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fisher, P. A., Goodman, J. G., and Kull, F. L. (1976) Thyroid ribonucelic acid-iodopeptides. Comparison of thyrosyl-complex II and thyrosyl-tRNA, Biochemistry, 15, 4065–4070.

    Article  CAS  PubMed  Google Scholar 

  85. Quivy, J. P., and Chroboczek, J. (1988) Tyrpsyl-tRNA synthetase from wheat germ, J. Biol. Chem., 263, 15277–15281.

    CAS  PubMed  Google Scholar 

  86. Dever, T. E. (2002) Gene-specific regulation by general translation factors, Cell, 108, 545–556.

    Article  CAS  PubMed  Google Scholar 

  87. Pedersen, B. K., and Febbraio, M. A. (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6, Physiol. Rev., 88, 1379–1406.

    Article  CAS  PubMed  Google Scholar 

  88. Nikolic, N., Gordens, S. W., Thoresen, G. H., Aas, V., Eckel, J., and Eckardt, K. (2017) Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise — possibilities and limitations, Acta Physiol., 220, 310–331.

    Article  CAS  Google Scholar 

  89. Murphy, K. T., Nielsen, O. B., and Clausen, T. (2008) Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle, Exp. Physiol., 93, 1249–1262.

    Article  CAS  PubMed  Google Scholar 

  90. Danilov, K., Sidorenko, S. V., Milovanova, K., Klimanova, E. A., Kapilevich, L. V., and Orlov, S. N. (2017) Electrical pulse stimulation decreases electrochemical Na+ and K+ gradients in C2C12 myotubes, Biochem. Biophys. Res. Commun., 493, 875–878.

    Article  CAS  PubMed  Google Scholar 

  91. Sidorenko, S. V., Klimanova, E. A., Milovanova, K., Lopina, O. D., Kapilevich, L. V., Chibalin, A. V., and Orlov, S. N. (2018) Transciptomic changes in C2C12 myotubes triggered by electrical stimulation: role of Ca 2+i -mediated and Ca 2+i -independent signaling and elevated [Na+]i/[K+]i ratio, Cell Calcium, 76, 72–86.

    Article  CAS  PubMed  Google Scholar 

  92. Bakowski, D., and Parekh, A. B. (2002) Monovalent cation permeability and Ca2+ block of the store-operated Ca2+ current ICRAC in rat basophylic lleukemia cells, Pfluger Arch. Eur. J. Physiol., 443, 892–902.

    Article  CAS  Google Scholar 

  93. Hunt, S. P., Pini, A., and Evan, G. (1987) Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation, Nature, 328, 632–634.

    Article  CAS  PubMed  Google Scholar 

  94. Cole, A. J., Saffen, D. W., Baraban, J. M., and Worley, P. F. (1989) Rapid increase of an immediate early gene meseenger RNA in hippocampal neurons by synaptic NMDA receptor activation, Nature, 340, 474–476.

    Article  CAS  PubMed  Google Scholar 

  95. Jones, M. W., Errington, M. L., French, P. J., Fine, P. J., Bliss, T. V. P., Garel, S., Charney, P., Bozon, B., Laroche, S., and Davis, S. (2001) A requirement for the immediate early response gene Zif268 in the expression of late LTP and long-term memories, Nat. Neurosci., 4, 289–296.

    Article  CAS  PubMed  Google Scholar 

  96. Thiel, G., Mayer, S. I., Muller, I., Stefano, L., and Rossler, O. G. (2010) Egr-1 — a Ca2+-regulated transcription factor, Cell Calcium, 47, 397–403.

    Article  CAS  PubMed  Google Scholar 

  97. Alberini, C. A. (2009) Transcription factors in long-term memory and synaptic plasticity, Physiol. Rev., 89, 121–145.

    Article  CAS  PubMed  Google Scholar 

  98. Bennay, M., Langer, J., Meier, S. D., Kafitz, K. W., and Rose, C. R. (2008) Sodium signals in cerebellar Purkinje neurons and bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 56, 1138–1149.

    Article  PubMed  Google Scholar 

  99. Jaffe, D. B., Johnston, D., Lasser-Ross, N., Lisman, J. E., Miyakawa, H., and Ross, W N. (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurones, Nature, 357, 244–246.

    Article  CAS  PubMed  Google Scholar 

  100. Baeza-Lehnert, F., Saab, A. S., Gutierrez, R., Larenas, V., Diaz, E., Horn, M., Vargas, M., Hosli, L., Stobart, J., Hirrlinger, J., Weber, B., and Barros, L. F. (2019) Non-canonical control of neuronal energy status by the Na+ pump, Cell Metab., 29, 1–13.

    Article  CAS  Google Scholar 

  101. Smolyaninova, L. V., Shiyan, A. A., Kapilevich, L. V., Lopachev, A. V., Fedorova, T. N., Klementieva, T. S., Moskovtsev, A. A., Kubatiev, A. A., and Orlov, S. N. (2019) Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: role of a3- and a1-mediated signaling, PLoS One, in press.

  102. Coba, M. P., Valor, L. M., Kopanitsa, M. V., Afinowi, N. O., and Grant, S. G. (2008) Kinase networks integrate profiles of N-methyl-D-aspartate receptor-mediated gene expression in hippocampus, J. Biol. Chem., 283, 34101–34107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barry, D. N., and Commins, S. (2017) Temporal dynamics of emmediate early gene expression during cellular consolidation of spatial memory, Behav. Brain Res., 327, 44–53.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, S., Tai, C., MacVicar, B. A., Jia, W., and Cynader, M. S. (2009) Glutamatergic stimulation triggers rapid Krupple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity, Brain Res., 1250, 49–62.

    Article  CAS  PubMed  Google Scholar 

  105. Flavell, S. W., and Greenberg, M. E. (2008) Signaling mechanisms linking neuronal activity to gene expressoin and plasticity of the nervous system, Annu. Rev. Neurosci., 31, 563–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Malik, A. N., Vierbuchen, T., Hemberg, M., Rubin, A. A., Ling, E., Couch, C. H., Stroud, H., Spiegel, I., Kai-How Farth, K., Harmin, D. A., and Greenberg, M. E. (2014) Genome-wide identification and characterization of functional activity-dependent enhancers, Nat. Neurosci., 17, 1330–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 3, 721–732.

    Article  CAS  PubMed  Google Scholar 

  108. Wood, I. S., Perez de Heredia, F., Wang, B., and Trayhurn, P. (2009) Cellular hypoxia and adipose tisue dysfunction in obesity, Proc. Nutr. Soc., 68, 370–377; doi: https://doi.org/10.1017/S0029665109990206.

    Article  CAS  PubMed  Google Scholar 

  109. Orlov, S. N., La, J., Smolyaninova, L. V., and Dulin, N. O. (2019) Na+,K+-ATPase as a target for treatment of tissue fibrosis, Curr. Med. Chem., 26, 564–575; doi: https://doi.org/10.2174/0929867324666170619105407.

    Article  CAS  PubMed  Google Scholar 

  110. Akimova, O. A., Tverskoi, A. M., Smolyaninova, L. V., Mongin, A. A., Lopina, O. D., La, J., Dulin, N. O., and Orlov, S. N. (2015) Critical role of the α1-Na+,K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain, Apoptosis, 20, 1200–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Prof. A. A. Mongin (Albany Medical College, USA) for reading this review and providing critical comments.

Funding

This work was supported by the Russian Science Foundation (project 16-15-10026-p, section “Physiological and pathophysiological significance of Na +i ,K +i -dependent mechanism of gene expression regulation”) and Russian Foundation for Basic Research (project 18-04-00063, sections “Identified sensors of monovalent cations”, “Sodium as transcription regulator”, and “Potassium as translation regulator”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Klimanova.

Additional information

Conflict of interest

The authors declare no conflict of interest in financial or any other sphere.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 11, pp. 1592–1609.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimanova, E.A., Sidorenko, S.V., Tverskoi, A.M. et al. Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers. Biochemistry Moscow 84, 1280–1295 (2019). https://doi.org/10.1134/S0006297919110063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919110063

Keywords

Navigation