Skip to main content
Log in

Inorganic Polyphosphate and Cancer

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review presents data on the relationship between inorganic polyphosphate metabolism and carcinogenesis including participation of polyphosphates in the regulation of activity of mTOR and other proteins involved in carcinogenesis, the role of h-prune protein (human polyphosphatase) in cell migration and metastasis formation, the prospects for using polyphosphates and inhibitors of polyphosphate metabolism enzymes as agents for controlling cell proliferation and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, N. N., Gomez–Garcia, M. R., and Kornberg, A. (2009) Inorganic polyphosphate: essential for growth and survival, Ann. Rev. Biochem., 78, 605–647.

    Article  PubMed  CAS  Google Scholar 

  2. Reusch, R. N. (2012) Physiological importance of poly–(R)–3–hydroxybutyrates, Chem. Biodivers., 9, 2343–2366.

    Article  PubMed  CAS  Google Scholar 

  3. Kuroda, A. (2006) A polyphosphate–Lon protease complex in the adaptation of Escherichia coli to amino acid starvation, Biosci. Biotechnol. Biochem., 70, 325–331.

    Article  PubMed  CAS  Google Scholar 

  4. Azevedo, C., Livermore, T., and Saiardi, A. (2015) Protein polyphosphorylation of lysine residues by inorganic polyphosphate, Mol. Cell, 58, 71–82.

    Article  PubMed  CAS  Google Scholar 

  5. Gray, M. J., Wholey, W. Y., Wagner, N. O., Cremers, C. M., Mueller–Schickert, A., Hock, N. T., Krieger, A. G., Smith, E. M., Bender, R. A., Bardwell, J. C., and Jakob, U. (2014) Polyphosphate is a primordial chaperone, Mol. Cell, 53, 689–699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kumble, K. D., and Kornberg, A. (1995) Inorganic polyphosphate in mammalian cells and tissues, J. Biol. Chem., 270, 5818–5822.

    Article  PubMed  CAS  Google Scholar 

  7. Schroder, H. C., Kurz, L., Muller, W. E. G., and Lorenz, B. (2000) Polyphosphate in bone, Biochemistry (Moscow), 65, 296–353.

    CAS  Google Scholar 

  8. Muller, F., Mutch, N. J., Schenk, W. A., Smith, S. A., Esterl, L., Spronk, H. M., Schmidbauer, S., Gahl, W. A., Morrissey, J. H., and Renne, T. (2009) Platelet polyphos–phates are proinflammatory and procoagulant mediators in vivo, Cell, 139, 1143–1156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Docampo, R. (2014) Polyphosphate: a target for thrombosis attenuation, Blood, 124, 3177–3178.

    Article  PubMed  CAS  Google Scholar 

  10. Omelon, S., Georgiou, J., Henneman, Z. J., Wise, L. M., Sukhu, B., Hant, T., Wynnyckyj, S., Holmyard, D., Bielecki, R., and Grynpas, M. D. (2009) Control of vertebrate skeletal mineralization by polyphosphates, PLoS One, 4, e5634.

    Google Scholar 

  11. Mikami, Y., Tsuda, H., Akiyama, Y., Honda, M., Shimizu, N., Suzuki, N., and Komiyama, K. (2016) Alkaline phosphatase determines polyphosphate–induced mineralization in a cell–type independent manner, J. Bone Miner. Metab., 34, 627–637.

    Article  PubMed  CAS  Google Scholar 

  12. Müller, W. E., Wang, X., and Schroder, H. C. (2017) New target sites for treatment of osteoporosis, Prog. Mol. Subcell. Biol., 55, 187–219.

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz, F. A., Lea, C. R., Oldfield, E., and Docampo, R. (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes, J. Biol. Chem., 279, 44250–44257.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, S. A., and Morrissey, J. H. (2008) Polyphosphate as a general procoagulant agent, J. Thromb. Haemost., 6, 1750–1756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Muller, F., and Renne, T. (2011) Platelet polyphosphates: the nexus of primary and secondary hemostasis, Scand. J. Clin. Lab. Invest., 71, 82–86.

    Article  PubMed  CAS  Google Scholar 

  16. Hassanian, S. M., Avan, A., and Ardeshirylajimi, A. (2017) Inorganic polyphosphate: a key modulator of inflammation, J. Thromb. Haemost., 15, 213–218.

    Article  PubMed  CAS  Google Scholar 

  17. Zakharian, E., Thyagarajan, B., French, R. J., Pavlov, E., and Rohacs, T. (2009) Inorganic polyphosphate modulates TRPM8 channels, PLoS One, 4, e5404.

    Google Scholar 

  18. Seidlmayer, L. K., Juettner, V. V., Kettlewell, S., Pavlov, E. V., Blatter, L. A., and Dedkova, E. N. (2015) Distinct mPTP activation mechanisms in ischemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate, Cardiovasc. Res., 106, 237–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Baev, A. Y., Negoda, A., and Abramov, A. Y. (2017) Modulation of mitochondrial ion transport by inorganic polyphosphate–essential role in mitochondrial permeability transition pore, J. Bioenerg. Biomembr., 49, 49–55.

    Article  PubMed  CAS  Google Scholar 

  20. Muller, W. E. G., Wang, S., Neufurth, M., Kokkinopoulou, M., Feng, Q., Schroder, H. C., and Wang, X. (2017) Polyphosphate as donor of high–energy phosphate for the synthesis of ADP and ATP, J. Cell Sci., 130, 2747–2756.

    Article  PubMed  CAS  Google Scholar 

  21. Muller, W. E. G., Wang, S., Wiens, M., Neufurth, M., Ackermann, M., Relkovic, D., Kokkinopoulou, M., Feng, Q., Schroder, H. C, and Wang, X. (2017) Uptake of polyphosphate microparticles in vitro (SaOS–2 and HUVEC cells) followed by an increase of the intracellular ATP pool size, PLoS One, 12, e0188977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rodic, S., and Vincent, M. D. (2018) Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype, Int. J. Cancer, 142, 440–448.

    Article  PubMed  CAS  Google Scholar 

  23. Gray, M. J., and Jakob, U. (2015) Oxidative stress protec–tion by polyphosphate–new roles for an old player, Curr. Opin. Microbiol., 24, 1–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang, L., Fraley, C. D., Faridi, J., Kornberg, A., and Roth, R. A. (2003) Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells, Proc. Natl. Acad. Sci. USA, 100, 11249–1154.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, K., and Fingar, D. C. (2014) Growing knowledge of the mTOR signaling network, Semin. Cell. Dev. Biol., 36, 79–90.

    Article  PubMed  CAS  Google Scholar 

  26. Holroyd, A. K., and Michie, A. M. (2018) The role of mTOR–mediated signaling in the regulation of cellular migration, Immunol. Lett., 196, 74–79.

    Article  PubMed  CAS  Google Scholar 

  27. Laplante, M., and Sabatini, D. M. (2009) mTOR signaling at a glance, J. Cell. Sci., 122, 3589–3594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and age–ing, Nat. Rev. Mol. Cell. Biol., 12, 21–35.

    CAS  Google Scholar 

  29. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M. A., Hall, A., and Hall, M. N. (2004) Mammalian TORcomplex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nat. Cell. Biol., 6, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  30. Hassanian, S. M., Dinarvand, P., Smith, S. A., and Rezaie, A. R. (2015) Inorganic polyphosphate elicits proinflammatory responses through activation of mTOR complexes 1 and 2 in vascular endothelial cells, J. Thromb. Haemost., 13, 860–871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hassanian, S. M., Ardeshirylajimi, A., Dinarvand, P., and Rezaie, A. R. (2016) Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β–catenin signaling in endothelial cells, J. Thromb. Haemost., 14, 2261–2273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kornberg, A., Rao, N. N., and Ault–Riche, D. (2009) Inorganic polyphosphate: essential for growth and survival, Annu. Rev. Biochem., 78, 605–647.

    Article  PubMed  CAS  Google Scholar 

  33. Morrissey, J. H., Choi, S. H., and Smith, S. A. (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation, Blood, 119, 5972–5979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jimenez–Nunez, M. D., Moreno–Sanchez, D., Hernandez–Ruiz, L., Benitez–Rondan, A., Ramos–Amaya, A., Rodriguez–Bayona, B., Medina, F., Brieva, J. A., and Ruiz, F. A. (2012) Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription, Haematologica, 97, 1264–1271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dedkova, E. N., and Blatter, L. A. (2014) Role of β–hydroxybutyrate, its polymer poly–β–hydroxybutyrate and inorganic polyphosphate in mammalian health and disease, Front. Physiol., 5, 260.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riehl, A., Nemeth, J., Angel, P., and Hess, J. (2009) The receptor RAGE: bridging inflammation and cancer, Cell. Commun. Signal., 7, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wan, H. X., Hu, J. H., Xie, R., Yang, S. M., and Dong, H. (2016) Important roles of P2Y receptors in the inflammation and cancer of digestive system, Oncotarget, 7, 28736–28747.

    PubMed  PubMed Central  Google Scholar 

  38. Tammenkoski, M., Koivula, K., Cusanelli, E., Zollo, M., Steegborn, C., Baykov, A. A., and Lahti, R. (2008) Human metastasis regulator protein H–prune is a short–chain exopolyphosphatase, Biochemistry, 47, 9707–9713.

    Article  PubMed  CAS  Google Scholar 

  39. Lonetti, A., Szijgyarto, Z., Bosch, D., Loss, O., Azevedo, C., and Saiardi, A. (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases, J. Biol. Chem., 286, 31966–31974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chakraborty, A. (2017) The inositol pyrophosphate pathway in health and diseases, Biol. Rev., 93, 1203–1227.

    Article  PubMed  Google Scholar 

  41. Grudzien–Nogalska, E., Jiao, X., Song, M. G., Hart, R. P., and Kiledjian, M. (2016) Nudt3 is an mRNA decapping enzyme that modulates cell migration, RNA, 22, 773–781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. D’Angelo, A., Garzia, L., Andre, A., Carotenuto, P., Aglio, V., Guardiola, O., Arrigoni, G., Cossu, A., Palmieri, G., Aravind, L., and Zollo, M. (2004) Prune cAMP phospho–diesterase binds nm23–H1 and promotes cancer metastasis, Cancer Cell, 5, 137–149.

    Article  PubMed  Google Scholar 

  43. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest, A. R., Kawaji, H., Rehli, M., Baillie, J. K., de Hoon, M. J., Haberle, V., Lassmann, T., Kulakovskiy, I. V., Lizio, M., Itoh, M., Andersson, R., Mungall, C. J., Meehan, T. F., Schmeier, S., Bertin, N., Jorgensen, M., Dimont, E., Arner, E., Schmidl, C., Schaefer, U., Medvedeva, Y. A., Plessy, C., Vitezic, M., Severin, J., Semple, C., Ishizu, Y., Young, R. S., Francescatto, M., Alam, I., Albanese, D., Altschuler, G. M., Arakawa, T., Archer, J. A., Arner, P., Babina, M., Rennie, S., Balwierz, P. J., Beckhouse, A. G., Pradhan–Bhatt, S., Blake, J. A., Blumenthal, A., Bodega, B., Bonetti, A., Briggs, J., Brombacher, F., Burroughs, A. M., Califano, A., Cannistraci, C. V., Carbajo, D., Chen, Y., Chierici, M., Ciani, Y., Clevers, H. C., Dalla, E., Davis, C. A., Detmar, M., Diehl, A. D., Dohi, T., Drablos, F., Edge, A. S., Edinger, M., Ekwall, K., Endoh, M., Enomoto, H., Fagiolini, M., Fairbairn, L., Fang, H., Farach–Carson, M. C., Faulkner, G. J., Favorov, A. V., Fisher, M. E., Frith, M. C., Fujita, R., Fukuda, S., Furlanello, C., Furino, M., Furusawa, J., Geijtenbeek, T. B., Gibson, A. P., Gingeras, T., Goldowitz, D., Gough, J., Guhl, S., Guler, R., Gustincich, S., Ha, T. J., Hamaguchi, M., Hara, M., Harbers, M., Harshbarger, J., Hasegawa, A., Hasegawa, Y., Hashimoto, T., Herlyn, M., Hitchens, K. J., Ho Sui, S. J., Hofmann, O. M., Hoof, I., Hori, F., Huminiecki, L., Iida, K., Ikawa, T., Jankovic, B. R., Jia, H., Joshi, A., Jurman, G., Kaczkowski, B., Kai, C., Kaida, K., Kaiho, A., Kajiyama, K., Kanamori–Katayama, M., Kasianov, A. S., Kasukawa, T., Katayama, S., Kato, S., Kawaguchi, S., Kawamoto, H., Kawamura, Y. I., Kawashima, T., Kempfle, J. S., Kenna, T. J., Kere, J., Khachigian, L. M., Kitamura, T., Klinken, S. P., Knox, A. J., Kojima, M., Kojima, S., Kondo, N., Koseki, H., Koyasu, S., Krampitz, S., Kubosaki, A., Kwon, A. T., Laros, J. F., Lee, W., Lennartsson, A., Li, K., Lilje, B., Lipovich, L., Mackay–Sim, A., Manabe, R., Mar, J. C., Marchand, B., Mathelier, A., Mejhert, N., Meynert, A., Mizuno, Y., de Lima Morais, D. A., Morikawa, H., Morimoto, M., Moro, K., Motakis, E., Motohashi, H., Mummery, C. L., Murata, M., Nagao–Sato, S., Nakachi, Y., Nakahara, F., Nakamura, T., Nakamura, Y., Nakazato, K., van Nimwegen, E., Ninomiya, N., Nishiyori, H., Noma, S., Noma, S., Noazaki, T., Ogishima, S., Ohkura, N., Ohimiya, H., Ohno, H., Ohshima, M., Okada–Hatakeyama, M., Okazaki, Y., Orlando, V., Ovchinnikov, D. A., Pain, A., Passier, R., Patrikakis, M., Persson, H., Piazza, S., Prendergast, J. G., Rackham, O. J., Ramilowski, J. A., Rashid, M., Ravasi, T., Rizzu, P., Roncador, M., Roy, S., Rye, M. B., Saijyo, E., Sajantila, A., Saka, A., Sakaguchi, S., Sakai, M., Sato, H., Savvi, S., Saxena, A., Schneider, C., Schultes, E. A., Schulze–Tanzil, G. G., Schwegmann, A., Sengstag, T., Sheng, G., Shimoji, H., Shimoni, Y., Shin, J. W., Simon, C., Sugiyama, D., Sugiyama, T., Suzuki, M., Suzuki, N., Swoboda, R. K., ‘t Hoen, P. A., Tagami, M., Takahashi, N., Takai, J., Tanaka, H., Tatsukawa, H., Tatum, Z., Thompson, M., Toyodo, H., Toyoda, T., Valen, E., van de Wetering, M., van den Berg, L. M., Verado, R., Vijayan, D., Vorontsov, I. E., Wasserman, W. W., Watanabe, S., Wells, C. A., Winteringham, L. N., Wolvetang, E., Wood, E. J., Yamaguchi, Y., Yamamoto, M., Yoneda, M., Yonekura, Y., Yoshida, S., Zabierowski, S. E., Zhang, P. G., Zhao, X., Zucchelli, S., Summers, K. M., Suzuki, H., Daub, C. O., Kawai, J., Heutink, P., Hide, W., Freeman, T. C., Lenhard, B., Bajic, V. B., Taylor, M. S., Makeev, V. J., Sandelin, A., Hume, D. A., Carninci, P., and Hayashizaki, Y. (2014) A promoter–level mammalian expression atlas, Nature, 507, 462–470.

    Article  CAS  Google Scholar 

  44. Andreeva, N., Lichko, L., Trilisenko, L., Kulakovskiy, I. V., and Kulakovskaya, T. (2016) Yeast polyphosphatases PPX1 and PPN1: properties, functions, and localization, in Inorganic Polyphosphates in Eukaryotic Cells (Kulakovskaya, T., Pavlov, E., and Dedkova, E., eds.), Springer, Cham, pp. 15–33.

    Google Scholar 

  45. Galasso, A., and Zollo, M. (2009) The Nm23–H1–h–prune complex in cellular physiology: a “tip of the iceberg” protein network perspective, Mol. Cell. Biochem., 329, 149–159.

    Article  PubMed  CAS  Google Scholar 

  46. Marino, N., Marshall, J. C., and Steeg, P. S. (2011) Protein–protein interactions: a mechanism regulating the anti–metastatic properties of Nm23–H1, Naunyn Schmiedebergs Arch. Pharmacol., 384, 351–362.

    Article  PubMed  CAS  Google Scholar 

  47. Carotenuto, M., De Antonellis, P., Liguori, L., Benvenuto, G., Magliulo, D., Alonzi, A., Turino, C., Attanasio, C., Damiani, V., Bello, A. M., Vitiello, F., Pasquinelli, R., Terracciano, L., Federico, A., Fusco, A., Freeman, J., Dale, T. C., Decraene, C., Chiappetta, G., Piantedosi, F., Calabrese, C., and Zollo, M. (2014) H–prune through GSK–3β interaction sustains canonical WNT/β–catenin signaling enhancing cancer progression in NSCLC, Oncotarget, 5, 5736–5749.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hashimoto, M., Kobayashi, T., Tashiro, H., Arihiro, K., Kikuchi, A., and Ohdan, H. (2016) h–prune is associated with poor prognosis and epithelial–mesenchymal transition in patients with colorectal liver metastases, Int. J. Cancer, 139, 812–823.

    Article  PubMed  CAS  Google Scholar 

  49. Oue, N., Yoshida, K., Noguchi, T., Sentani, K., Kikuchi, A., and Yasui, W. (2007) Increased expression of h–prune is associated with tumor progression and poor survival in gastric cancer, Cancer Sci., 98, 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  50. Noguchi, T., Oue, N., Wada, S., Sentani, K., Sakamoto, N., Kikuchi, A., and Yasui, W. (2009) h–prune is an independent prognostic marker for survival in esophageal squamous cell carcinoma, Ann. Surg. Oncol., 16, 1390–1396.

    Article  PubMed  Google Scholar 

  51. Nambu, J., Kobayashi, T., Hashimoto, M., Tashiro, H., Sugino, K., Shimamoto, F., Kikuchi, A., and Ohdan, H. (2016) h–prune affects anaplastic thyroid cancer invasion and metastasis, Oncol. Rep., 35, 3445–3452.

    Article  PubMed  CAS  Google Scholar 

  52. Han, K. Y., Hong, B. S., Yoon, Y. J., Yoon, C. M., Kim, Y.–K., Kwon, Y.–G., and Gho, Y. S. (2007) Polyphosphate blocks tumor metastasis via anti–angiogenic activity, Biochem. J., 406, 49–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nickel, K. F., Ronquist, G., Langer, F., Labberton, L., Fuchs, T. A., Bokemeyer, C., Sauter, G., Graefen, M., Mackman, N., Stavrou, E. X., Ronquist, G., and Renne, T. (2015) The polyphosphate–factor XII pathway drives coagulation in prostate cancer–associated thrombosis, Blood, 126, 1379–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sakatani, A., Fujiya, M., Ueno, N., Kashima, S., Sasajima, J., Moriichi, K., Ikuta, K., Tanabe, H., and Kohgo, Y. (2016) Polyphosphate derived from Lactobacillus brevis inhibits colon cancer progression through induction of cell apoptosis, Anticancer Res., 36, 591–598.

    PubMed  CAS  Google Scholar 

  55. Tsutsumi, K., Matsuya, Y., Sugahara, T., Tamura, M., Sawada, S., Fukura, S., Nakano, H., and Date, H. (2017) Inorganic polyphosphate enhances radio–sensitivity in a human non–small cell lung cancer cell line, H1299, Tumor Biol., 39, No. 6; doi: 10.1177/1010428317705033.

    Google Scholar 

  56. Demirkhanyan, L., Elustondo, P., Pavlov, E., and Zakharian, E. (2014) Role of polyphosphate in cancer cell proliferation, Biophys. J., 106, 753a.

    Article  Google Scholar 

  57. Solesio, M. E., and Pavlov, E. V. (2016) Methods of inorganic polyphosphate (PolyP) assay in higher eukaryotic cells, in Inorganic Polyphosphates in Eukaryotic Cells (Kulakovskaya, T., Pavlov, E., and Dedkova, E., eds.), Springer, Cham, pp. 81–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kulakovskaya.

Additional information

Original Russian Text © E. V. Kulakovskaya, M. Yu. Zemskova, T. V. Kulakovskaya, 2018, published in Biokhimiya, 2018, Vol. 83, No. 8, pp. 1211–1219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakovskaya, E.V., Zemskova, M.Y. & Kulakovskaya, T.V. Inorganic Polyphosphate and Cancer. Biochemistry Moscow 83, 961–968 (2018). https://doi.org/10.1134/S0006297918080072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918080072

Keywords

Navigation