Skip to main content
Log in

Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review summarizes current data on the structure and functions of myosin essential light chains (ELCs) and on their role in functioning of the myosin head as a molecular motor. The data on structural and functional features of the N-terminal extension of myosin ELC from skeletal and cardiac muscles are analyzed; the role of this extension in the ATP- dependent interaction of myosin heads with actin in the molecular mechanism of muscle contraction is discussed. The data on possible interactions of the ELC N-terminal extension with the myosin head motor domain in the myosin ATPase cycle are presented, including the results of the authors’ studies that are in favor of such interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A1 and A2:

isoforms of skeletal muscle myosin essential (alkali) light chains

AlF 4 :

aluminum fluoride anion

BeFx :

beryllium fluoride anion

DLS:

dynamic light scattering

DSC:

differential scanning calorimetry

ELC:

myosin essential light chain

ELCa:

atrial ELC

ELCv:

ventricular ELC

FHC:

familial hypertrophic cardiomyopathy

FRET:

Forster resonance energy transfer

MM :

molecular mass

RLC:

myosin regulatory light chain

S1:

myosin subfragment 1

S1(A1) and S1(A2):

myosin subfragment 1 isoforms containing alkali light chains A1 and A2, respectively

References

  1. Toyoshima, Y. Y., Kron, S. J., McNully, E. M., Niebling, K. R., Toyoshima, C., and Spudich, J. A. (1987) Myosin subfragment–1 is sufficient to move actin filaments in vitro, Nature, 328, 536–539.

    Article  PubMed  CAS  Google Scholar 

  2. Levitsky, D. I. (2004) Actomyosin systems of biological motility, Biochemistry (Moscow), 69, 1177–1189.

    Article  CAS  Google Scholar 

  3. Rayment, I., Rypniewski, W., Schmidt–Base, K., Smith, R., Tomchick, D., Benning, M., Winkelmann, D., Wesenberg, G., and Holden, H. (1993) Three–dimensional structure of myosin subfragment 1: a molecular motor, Science, 261, 50–58.

    Article  PubMed  CAS  Google Scholar 

  4. Rayment, I. (1996) The structural basis of the myosin ATPase activity, J. Biol. Chem., 271, 15850–15853.

    Article  PubMed  CAS  Google Scholar 

  5. Uyeda, T. Q., Abramson, P. D., and Spudich, J. A. (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement, Proc. Natl. Acad. Sci. USA, 93, 4459–4464.

    Article  PubMed  CAS  Google Scholar 

  6. Houdusse, A., Szent–Gyorgyi, A. G., and Cohen, C. (2000) Three conformational states of scallop myosin S1, Proc. Natl. Acad. Sci. USA, 97, 11238–11243.

    Article  PubMed  CAS  Google Scholar 

  7. Phan, B., and Reisler, E. (1992) Inhibition of myosin ATPase by beryllium fluoride, Biochemistry, 31, 4787–4793.

    Article  PubMed  CAS  Google Scholar 

  8. Werber, M. M., Peyser, Y. M., and Muhlrad, A. (1992) Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1–nucleotide complexes, Biochemistry, 31, 7190–7197.

    Article  PubMed  CAS  Google Scholar 

  9. Ponomarev, M. A., Timofeev, V. P., and Levitsky, D. I. (1995) The difference between ADP–beryllium fluoride and ADP–aluminum fluoride complexes of the spin–labeled myosin subfragment 1, FEBS Lett., 371, 261–263.

    Article  PubMed  CAS  Google Scholar 

  10. Phan, B. C., Peyser, Y. M., Reisler, E., and Muhlrad, A. (1997) Effect of complexes of ADP and phosphate analogs on the conformation of the Cys707–Cys697 region of myosin subfragment 1, Eur. J. Biochem., 243, 636–642.

    Article  PubMed  CAS  Google Scholar 

  11. Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre–power stroke state, Cell, 94, 559–571.

    Article  PubMed  CAS  Google Scholar 

  12. Wagner, P. D., and Giniger, E. (1981) Hydrolysis of ATP and reversible binding to F–actin by myosin heavy chains free of all light chains, Nature, 292, 560–562.

    Article  PubMed  CAS  Google Scholar 

  13. Sivaramakrishnan, M., and Burke, M. (1982) The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity, J. Biol. Chem., 257, 1102–1105.

    PubMed  CAS  Google Scholar 

  14. Frank, G., and Weeds, A. G. (1974) The amino–acid sequence of the alkali light chains of rabbit skeletal–muscle myosin, Eur. J. Biochem., 44, 317–334.

    Article  PubMed  CAS  Google Scholar 

  15. Buckingham, M., Kelly, R., Tajbakhsh, S., and Zammit, P. (1998) The formation and maturation of skeletal muscle in the mouse: the myosin MLC1F/3F gene as a molecular model, Acta Physiol. Scand., 163, 3–5.

    Article  Google Scholar 

  16. Kelly, R., Alonso, S., Tajbakhsh, S., Cossu, G., and Buckingham, M. (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice, J. Cell Biol., 129, 383–396.

    Article  PubMed  CAS  Google Scholar 

  17. Hernandez, O. M., Jones, M., Guzman, G., and Szczesna–Cordary, D. (2007) Myosin essential light chain in health and disease, Am. J. Physiol. Heart Circ. Physiol., 292, H1643–H1654.

    Article  PubMed  CAS  Google Scholar 

  18. Weeds, A. G., and Taylor, R. S. (1975) Separation of sub–fragment–1 isoenzymes from rabbit skeletal muscle myosin, Nature, 257, 54–56.

    Article  PubMed  CAS  Google Scholar 

  19. Trayer, H. R., and Trayer, I. P. (1988) Fluorescence resonance energy transfer within the complex formed by actin and myosin subfragment 1. Comparison between weakly and strongly attached states, Biochemistry, 27, 5718–5727.

    Article  PubMed  CAS  Google Scholar 

  20. Di Blasio, B., Saviano, M., Fattorusso, R., Lombardi, A., Pedone, C., Valle, V., and Lorenzi, G. P. (1994) A crystal structure with features of an antiparallel alpha–pleated sheet, Biopolymers, 34, 1463–1468.

    Article  PubMed  Google Scholar 

  21. Abillon, E., Bremier, L., and Cardinaud, R. (1990) Conformational calculations on the Ala14–Pro27 LC1 segment of rabbit skeletal myosin, Biochim. Biophys. Acta, 1037, 394–400.

    Article  PubMed  CAS  Google Scholar 

  22. Aydt, E. M., Wolff, G., and Morano, I. (2007) Molecular modeling of the myosin–S1(A1) isoform, J. Struct. Biol., 159, 158–163.

    Article  PubMed  CAS  Google Scholar 

  23. Cummins, P., Price, K. M., and Littler, W. A. (1980) Foetal myosin light chain in human ventricle, J. Muscle Res. Cell Motil., 1, 357–366.

    Article  PubMed  CAS  Google Scholar 

  24. Morano, I. (1999) Tuning the human heart molecular motors by myosin light chains, J. Mol. Med., 77, 544–555.

    Article  PubMed  CAS  Google Scholar 

  25. Price, K. M., Littler, W. A., and Cummins, P. (1980) Human atrial and ventricular myosin light–chains subunits in the adult and during development, Biochem. J., 191, 571–580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kurabayashi, M., Komuro, I., Tsuchimochi, H., Takaku, F., and Yazaki, Y. (1988) Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones, J. Biol. Chem., 263, 13930–13936.

    PubMed  CAS  Google Scholar 

  27. Morano, M., Zacharzowski, U., Maier, M., Lange, P. E., Alexi–Meskishvili, V., Haase, H., and Morano, I. (1996) Regulation of human heart contractility by essential myosin light chain isoforms, J. Clin. Invest., 98, 467–473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Morano, I., Hadicke, K., Haase, H., Bohm, M., Erdmann, E., and Schaub, M. C. (1997) Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart, J. Mol. Cell Cardiol., 29, 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  29. Abdelaziz, A., Segaric, J., Bartsch, H., Petzhold, D., Schlegel, W. P., Kott, M., Seefeldt, I., Klose, J., Bader, M., Haase, H., and Morano, I. (2004) Functional characterization of the human atrial essential myosin light chain (hALC–1) in a transgenic rat model, J. Mol. Med., 82, 265–274.

    Article  PubMed  CAS  Google Scholar 

  30. Fewell, J. G., Hewett, T. E., Sanbe, A., Klevitsky, R., Hayes, E., Warshaw, D., Maughan, D., and Robbins, J. (1998) Functional significance of cardiac myosin essential light chain isoform switching in transgenic mice, J. Clin. Invest., 101, 2630–2639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Diffee, G. M., Seversen, E. A., Stein, T. D., and Johnson, J. A. (2003) Microarray expression analysis of effects of exercise training: increase in atrial MLC–1 in rat ventricles, Am. J. Physiol. Heart Circ. Physiol., 284, 830–837.

    Article  Google Scholar 

  32. Khalina, Y. N., Bartsch, H., Petzhold, D., Haase, H., Podlubnaya, Z. A., Shpagina, M. D., and Morano, I. (2005) Reconstitution of ventricular myosin with atrial light chains 1 improves its functional properties, Acta Biochim. Pol., 52, 443–448.

    PubMed  CAS  Google Scholar 

  33. Timson, D. J., Trayer, H. R., and Trayer, I. P. (1998) The N–terminus of A1–type myosin essential light chains binds actin and modulates myosin motor function, Eur. J. Biochem., 255, 654–662.

    Article  PubMed  CAS  Google Scholar 

  34. Houdusse, A., and Cohen, C. (1996) Structure of the regulatory domain of scallop myosin at 2 Å resolution: implications for regulation, Structure, 4, 21–32.

    Article  PubMed  CAS  Google Scholar 

  35. Wagner, P. D., and Giniger, E. (1981) Hydrolysis of ATP and reversible binding to F–actin by myosin heavy chains free of all light chains, Nature, 292, 560–562.

    Article  PubMed  CAS  Google Scholar 

  36. Wagner, P. D., and Stone, D. B. (1983) Myosin heavy chain–light chain recombinations and interactions between the two classes of light chains, J. Biol. Chem., 258, 8876–8882.

    PubMed  CAS  Google Scholar 

  37. Lowey, S., Waller, G. S., and Trybus, K. M. (1993) Skeletal muscle myosin light chains are essential for physiological speeds of shortening, Nature, 365, 454–456.

    Article  PubMed  CAS  Google Scholar 

  38. VanBuren, P., Waller, G. S., Harris, D. E., Trybus, K. M., Warshaw, D. M., and Lowey, S. (1994) The essential light chain is required for full force production by skeletal muscle myosin, Proc. Natl. Acad. Sci. USA, 91, 12403–12407.

    Article  PubMed  CAS  Google Scholar 

  39. Spirito, P., Bellone, P., Harris, K. M., Bernabo, P., Bruzzi, P., and Maron, B. J. (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy, N. Engl. J. Med., 342, 1778–1785.

    Article  PubMed  CAS  Google Scholar 

  40. Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., Rayment, I., Sellers, J. R., Fananapazir, L., and Epstein, N. D. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle, Nat. Genet., 13, 63–69.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, W., Hwang, T. H., Kimura, A., Park, S. W., Satoh, M., Nishi, H., Harada, H., Toyama, J., and Park, J. E. (2001) Different expressivity of a ventricular essential myosin light chain gene Ala57Gly mutation in familial hypertrophic cardiomyopathy, Am. Heart J., 141, 184–189.

    Article  PubMed  CAS  Google Scholar 

  42. Olson, T. M., Karst, M. L., Whitby, F. G., and Driscoll, D. J. (2002) Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid–cavitary hypertrophy and restrictive physiology, Circulation, 105, 2337–2340.

    Article  PubMed  CAS  Google Scholar 

  43. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban, M., Gueffet, J.–P., Millaire, A., Desnos, M., Schwartz, K., Hainque, B., and Komajda, M. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy, Circulation, 107, 2227–2232.

    Article  PubMed  Google Scholar 

  44. Morita, H., Rehm, H. L., Menesses, A., McDonough, B., Roberts, A. E., Kucherlapati, R., Towbin, J. A., Seidman, J. G., and Seidman, C. E. (2008) Shared genetic causes of cardiac hypertrophy in children and adults, N. Engl. J. Med., 358, 1899–1908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jay, A., Chikarmane, R., Poulik, J., and Misra, V. K. (2013) Infantile hypertrophic cardiomyopathy associated with a novel MYL3 mutation, Cardiology, 124, 248–251.

    Article  PubMed  CAS  Google Scholar 

  46. Yuan, C.–C., Kazmierczak, K., Liang, J., Kanashiro–Takeuchi, R., Irving, T. C., Gomes, A. V., Wang, Y., Burghardt, T. P., and Szczesna–Cordary, D. (2017) Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice, Cardiovasc. Res., 113, 1124–1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kazmierczak, K., Paulino, E. C., Huang, W., Muthu, P., Liang, J., Yuan, C. C., Rojas, A. I., Hare, J. M., and Szczesna–Cordary, D. (2013) Discrete effects of A57G–myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy, Am. J. Physiol. Heart Circ. Physiol., 305, H575–H589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Huang, W., and Szczesna–Cordary, D. (2015) Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations, J. Muscle Res. Cell Motil., 36, 433–445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lossie, J., Ushakov, D. S., Ferenczi, M. A., Werner, S., Keller, S., Haase, H., and Morano, I. (2012) Mutations of ventricular essential myosin light chain disturb myosin binding and sarcomeric sorting, Cardiovasc. Res., 93, 390–396.

    Article  PubMed  CAS  Google Scholar 

  50. Lossie, J., Kohncke, C., Mahmoodzadeh, S., Steffen, W., Canepari, M., Maffei, M., Taube, M., Larcheveque, O., Baumert, P., Haase, H., Bottinelli, R., Regitz–Zagrosek, V., and Morano, I. (2014) Molecular mechanism regulating myosin and cardiac functions by ELC, Biochem. Biophys. Res. Commun., 450, 464–469.

    Article  PubMed  CAS  Google Scholar 

  51. Guhathakurta, P., Prochniewicz, E., Roopnarine, O., Rohde, J. A., and Thomas, D. D. (2017) A cardiomyopathy mutation in the myosin essential light chain alters acto–myosin structure, Biophys. J., 113, 91–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Milligan, R. A. (1996) Protein–protein interactions in the rigor actomyosin complex, Proc. Natl. Acad. Sci. USA, 93, 21–26.

    Article  PubMed  CAS  Google Scholar 

  53. Borejdo, J., Ushakov, D. S., Moreland, R., Akopova, I., Reshetnyak, Y., Saraswat, L. D., Kamm, K., and Lowey, S. (2001) The power stroke causes changes in the orientation and mobility of the termini of essential light chain 1 of myosin, Biochemistry, 40, 3796–3803.

    Article  PubMed  CAS  Google Scholar 

  54. Billington, N., Revill, D. J., Burgess, S. A., Chantler, P. D., and Knight, P. J. (2014) Flexibility within the heads of muscle myosin–2 molecules, J. Mol. Biol., 426, 894–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Levitsky, D. I., Nikolaeva, O. P., Orlov, V. N., Pavlov, D. A., Ponomarev, M. A., and Rostkova, E. V. (1998) Differential scanning calorimetric studies on myosin and actin, Biochemistry (Moscow), 63, 322–333.

    CAS  Google Scholar 

  56. Levitsky, D. I. (2004) Structural and functional studies of muscle proteins by using differential scanning calorimetry, in The Nature of Biological Systems as Revealed by Thermal Methods (Lorinczy, D., ed.), Kluwer Academic Publishers, Dordrecht–Boston–London, pp. 127–158.

    Google Scholar 

  57. Levitsky, D. I., Shnyrov, V. L., Khvorov, N. V., Bukatina, A. E., Vedenkina, N. S., Permyakov, E. A., Nikolaeva, O. P., and Poglazov, B. F. (1992) Effects of nucleotide binding on thermal transitions and domain structure of myosin sub–fragment 1, Eur. J. Biochem., 209, 829–835.

    Article  PubMed  CAS  Google Scholar 

  58. Bobkov, A. A., Khvorov, N. V., Golitsina, N. L., and Levitsky, D. I. (1993) Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride, FEBS Lett., 332, 64–66.

    Article  PubMed  CAS  Google Scholar 

  59. Privalov, P. L., and Potekhin, S. A. (1986) Scanning microcalorimetry in studying temperature–induced changes in proteins, Methods Enzymol., 131, 4–51.

    Article  PubMed  CAS  Google Scholar 

  60. Levitsky, D. I., Khvorov, N. V., Shnyrov, V. L., Vedenkina, N. S., Permyakov, E. A., and Poglazov, B. F. (1990) Domain structure of myosin subfragment–1. Selective denaturation of the 50 kDa segment, FEBS Lett., 264, 176–178.

    Article  PubMed  CAS  Google Scholar 

  61. Markov, D. I., Zubov, E. O., Nikolaeva, O. P., Kurganov, B. I., and Levitsky, D. I. (2010) Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains, Int. J. Mol. Sci., 11, 4194–4226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Turoverov, K. K., Khaitlina, S. Yu., and Pinaev, G. P. (1976) Ultraviolet fluorescence of actin. Determination of native actin content in actin preparations, FEBS Lett., 62, 4–6.

    Article  PubMed  CAS  Google Scholar 

  63. Logvinova, D. S., Markov, D. I., Nikolaeva, O. P., Sluchanko, N. N., Ushakov, D. S., and Levitsky, D. I. (2015) Does interaction between the motor and regulatory domains of the myosin head occur during ATPase cycle? Evidence from thermal unfolding studies on myosin sub–fragment 1, PLoS One, 10, e0137517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Logvinova, D. S., Matyushenko, A. M., Nikolaeva, O. P., and Levitsky, D. I. (2018) Transient interaction between the N–terminal extension of the essential light chain–1 and motor domain of the myosin head during the ATPase cycle, Biochem. Biophys. Res. Commun., 495, 163–167.

    Article  PubMed  CAS  Google Scholar 

  65. Winstanley, M. A., Trayer, H. R., and Trayer, I. P. (1977) Role of the myosin light chains in binding to actin, FEBS Lett., 77, 239–242.

    Article  PubMed  CAS  Google Scholar 

  66. Wagner, P. D., Slater, C. S., Pope, B., and Weeds, A. G. (1979) Studies on the actin activation of myosin subfragment–1 isoezymes and the role of myosin light chains, Eur. J. Biochem., 99, 385–394.

    Article  PubMed  CAS  Google Scholar 

  67. Chalovich, J. M., Stein, L. A., Greene, L. E., and Eisenberg, E. (1984) Interaction of isozymes of myosin subfragment 1 with actin: effect of ionic strength and nucleotide, Biochemistry, 23, 4885–4889.

    Article  PubMed  CAS  Google Scholar 

  68. Prince, H. P., Trayer, H. R., Henry, G. D., Trayer, I. P., Dalgarno, D. C., Levine, B. A., Cary, P. D., and Turner, C. (1981) Proton nuclear–magnetic–resonance spectroscopy of myosin subfragment 1 isoenzymes, Eur. J. Biochem., 121, 213–219.

    Article  PubMed  CAS  Google Scholar 

  69. Sutoh, K. (1982) Identification of myosin–binding sites on the actin sequence, Biochemistry, 21, 3654–3661.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto, K., and Sekine, T. (1983) Interaction of alkali light chain 1 with actin: effect of ionic strength on the cross–linking of alkali light chain 1 with actin, J. Biochem., 94, 2075–2078.

    Article  PubMed  CAS  Google Scholar 

  71. Henry, G. D., Winstanley, M. A., Dalgarno, D. C., Scott, G. M., Levine, B. A., and Trayer, I. P. (1985) Characterization of the actin–binding site on the alkali light chain of myosin, Biochim. Biophys. Acta, 830, 233–243.

    Article  PubMed  CAS  Google Scholar 

  72. Milligan, R. A., Whittaker, M., and Safer, D. (1990) Molecular structure of F–actin and location of surface binding sites, Nature, 348, 217–221.

    Article  PubMed  CAS  Google Scholar 

  73. Timson, D. J., Trayer, H. R., Smith, K. J., and Trayer, I. P. (1999) Size and charge requirements for kinetic modulation and actin binding by alkali 1–type myosin essential light chains, J. Biol. Chem., 274, 18271–18277.

    Article  PubMed  CAS  Google Scholar 

  74. Hayashibara, T., and Miyanishi, T. (1994) Binding of the amino–terminal region of myosin alkali 1 light chain to actin and its effect on actin–myosin interaction, Biochemistry, 33, 12821–12827.

    Article  PubMed  CAS  Google Scholar 

  75. Morano, I., Ritter, O., Bonz, A., Timek, T., Vahl, C. F., and Michel, G. (1995) Myosin light chain–actin interaction regulates cardiac contractility, Circ. Res., 76, 720–725.

    Article  PubMed  CAS  Google Scholar 

  76. Rarick, H. M., Opgenorth, T. J., von Geldern, T. W., Wu–Wong, J. R., and Solaro, R. J. (1996) An essential myosin light chain peptide induces supramaximal stimulation of cardiac myofibrillar ATPase activity, J. Biol. Chem., 271, 27039–27043.

    Article  PubMed  CAS  Google Scholar 

  77. Timson, D. J., and Trayer, I. P. (1997) The role of the proline–rich region in A1–type myosin essential light chains: implications for information transmission in the acto–myosin complex, FEBS Lett., 400, 31–36.

    Article  PubMed  CAS  Google Scholar 

  78. Lowey, S., Saraswat, L. D., Liu, H., Volkmann, N., and Hanein, D. (2007) Evidence for an interaction between the SH3 domain and the N–terminal extension of the essential light chain in class II myosins, J. Mol. Biol., 371, 902–913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Andreev, O. A., and Boreido, J. (1995) Binding of heavy–chain and essential light–chain 1 of S1 to actin depends on the degree of saturation of F–actin filaments with S1, Biochemistry, 34, 14829–14233.

    Article  PubMed  CAS  Google Scholar 

  80. Valentin–Ranc, C., and Carlier, M.–F. (1992) Characteri–zation of oligomers as kinetic intermediates in myosin sub–fragment 1–induced polymerization of G–actin, J. Biol. Chem., 267, 21543–21550.

    PubMed  Google Scholar 

  81. Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sreter, F. A., and Gergely, J. (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers, J. Biol. Chem., 263, 9034–9039.

    PubMed  CAS  Google Scholar 

  82. Logvinova, D. S., Matyushenko, A. M., Nikolaeva, O. P., and Levitsky, D. I. (2017) Interaction of the N–terminal extension of myosin essential light chain–1 with F–actin studied by fluorescence resonance energy transfer, FEBS J., 284 (Suppl. 1), 190.

  83. Kazmierczak, K., Xu, Y., Jones, M., Guzman, G., Hernandez, O. M., Kerrick, W. G., and Szczesna–Cordary, D. (2009) The role of the N–terminus of the myosin essential light chain in cardiac muscle contraction, J. Mol. Biol., 387, 706–725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Haase, H., Dobbernack, G., Tunnemann, G., Karczewski, P., Cardoso, C., Petzhold, D., Schlegel, W. P., Lutter, S., Pierschalek, P., Behlke, J., and Morano, I. (2006) Minigenes encoding N–terminal domains of human cardiac myosin light chain–1 improve heart function of transgenic rats, FASEB J., 20, 865–873.

    Article  PubMed  Google Scholar 

  85. Guhathakurta, P., Prochniewicz, E., and Thomas, D. D. (2015) Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain, Proc. Natl. Acad. Sci. USA, 112, 4660–4665.

    Article  PubMed  CAS  Google Scholar 

  86. Tokunaga, M., Suzuki, M., Saeki, K., and Wakabayashi, T. (1987) Position of the amino terminus of myosin light chain 1 and light chain 2 determined by electron microscopy with monoclonal antibody, J. Mol. Biol., 194, 245–255.

    Article  PubMed  CAS  Google Scholar 

  87. Labbe, J.–P., Audemard, E., Bertrand, R., and Kassab, R. (1986) Specific interactions of the alkali light chain 1 in skeletal myosin heads probed by chemical cross–linking, Biochemistry, 25, 8325–8330.

    Article  PubMed  CAS  Google Scholar 

  88. Pliszka, B., Redowicz, M. J., and Stepkowski, D. (2001) Interaction of the N–terminal part of the A1 essential light chain with the myosin heavy chain, Biochem. Biophys. Res. Commun., 281, 924–928.

    Article  PubMed  CAS  Google Scholar 

  89. Rayment, I., and Winkelmann, D. A. (1984) Crystallization of myosin subfragment 1, Proc. Natl. Acad. Sci. USA, 81, 4378–4380.

    Article  PubMed  CAS  Google Scholar 

  90. Mrakovcic–Zenic, A., Oriol–Audit, C., and Reisler, E. (1981) On the alkali light chains of vertebrate skeletal myosin. Nucleotide binding and salt–induced conformational changes, Eur. J. Biochem., 115, 565–570.

    Article  PubMed  Google Scholar 

  91. Levitsky, D. I., Nikolaeva, O. P., Vedenkina, N. S., Shnyrov, V. L., Golitsina, N. L., Khvorov, N. V., Permyakov, E. A., and Poglazov, B. F. (1991) The effect of alkali light chains on the thermal stability of myosin sub–fragment 1, Biomed. Sci., 2, 140–146.

    PubMed  CAS  Google Scholar 

  92. Markov, D. I., Nikolaeva, O. P., and Levitsky, D. I. (2010) Effects of myosin “essential” light chain A1 on the aggregation properties of the myosin head, Acta Naturae, 2, 77–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Logvinova, D. S., Nikolaeva, O. P., and Levitsky, D. I. (2017) Intermolecular interactions of myosin subfragment 1 induced by the N–terminal extension of essential light chain 1, Biochemistry (Moscow), 82, 213–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Logvinova.

Additional information

Original Russian Text © D. S. Logvinova, D. I. Levitsky, 2018, published in Biokhimiya, 2018, Vol. 83, No. 8, pp. 1190–1210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinova, D.S., Levitsky, D.I. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. Biochemistry Moscow 83, 944–960 (2018). https://doi.org/10.1134/S0006297918080060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918080060

Keywords

Navigation