Skip to main content
Log in

The Regulatory Role of NAD in Human and Animal Cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADPR:

ADP-ribose

cADPR:

cyclic ADP-ribose

AIF:

apoptosis inducing factor

ARH:

ADP-ribosylhydrolase

ART:

ADP-ribosyltransferase

ARTC:

clostridial toxin-like ADP-ribosyltransferase

ARTD:

diphtheria toxin-like ADP-ribosyltransferase

ER:

endoplasmic reticulum

KDAC:

lysine deacetylase

NA:

nicotinic acid

NAAD:

nicotinic acid adenine dinucleotide

NAADP:

nicotinic acid adenine dinucleotide phosphate

Nam:

nicotinamide

NAMN:

nicotinic acid mononucleotide

NAR:

nicotinic acid riboside

NAPRT:

nicotinic acid phosphoribosyltransferase

NMN:

nicotinamide mononucleotide

NMNAT:

nicotinamide mononucleotide adenylyltransferase

NR:

nicotinamide riboside

PARP:

poly(ADP-ribose) polymerase

Sir2:

silent information regulator 2

SIRT1-7:

sirtuins 1-7

References

  1. Houtkooper, R. H., Pirinen, E., and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol., 13, 225–238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hassa, P. O., and Hottiger, M. O. (2008) The diverse bio–logical roles of mammalian PARPS, a small but powerful family of poly–ADP–ribose polymerases, Front. Biosci., 13, 3046–3082.

    Article  PubMed  CAS  Google Scholar 

  3. Nikiforov, A., Kulikova, V., and Ziegler, M. (2015) The human NAD metabolome: functions, metabolism and compartmentalization, Crit. Rev. Biochem. Mol. Biol., 50, 284–297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bai, P. (2015) Biology of poly(ADP–ribose) polymerases: the factotums of cell maintenance, Mol. Cell, 58, 947–958.

    Article  PubMed  CAS  Google Scholar 

  5. Feijs, K. L., Verheugd, P., and Luscher, B. (2013) Expanding functions of intracellular resident mono–ADP–ribosylation in cell physiology, FEBS J., 280, 3519–3529.

    Article  PubMed  CAS  Google Scholar 

  6. Fliegert, R., Gasser, A., and Guse, A. H. (2007) Regulation of calcium signalling by adenine–based second messengers, Boichem. Soc. Trans., 35, 109–114.

    Article  CAS  Google Scholar 

  7. Belenky, P., Bogan, K. L., and Brenner, C. (2007) NAD+ metabolism in health and disease, Trends Biochem. Sci., 32, 12–19.

    Article  PubMed  CAS  Google Scholar 

  8. Chiarugi, A., Dolle, C., Felici, R., and Ziegler, M. (2012) The NAD metabolome–a key determinant of cancer cell biology, Nat. Rev. Cancer, 12, 741–752.

    Article  PubMed  CAS  Google Scholar 

  9. Katsyuba, E., and Auwerx, J. (2017) Modulating NAD+ metabolism, from bench to bedside, EMBO J., 36, 2670–2683.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Dolle, C., Skoge, R. H., Vanlinden, M. R., and Ziegler, M. (2013) NAD biosynthesis in humans–enzymes, metabo–lites and therapeutic aspects, Curr. Top. Med. Chem., 13, 2907–2917.

    Article  PubMed  CAS  Google Scholar 

  11. Leidecker, O., Bonfiglio, J. J., Colby, T., Zhang, Q., Atanassov, I., Zaja, R., Palazzo, L., Stockum, A., Ahel, I., and Matic, I. (2016) Serine is a new target residue for endogenous ADP–ribosylation on histones, Nat. Chem. Biol., 12, 998–1000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Daniels, C. M., Ong, S. E., and Leung, A. K. (2014) Phosphoproteomic approach to characterize protein mono–and poly(ADP–ribosyl)ation sites from cells, J. Proteome Res., 13, 3510–3522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Burkle, A. (2005) Poly(ADP–ribose). The most elaborate metabolite of NAD+, FEBS J., 272, 4576–4589.

    Article  PubMed  CAS  Google Scholar 

  14. Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R. T., Ahel, I., and Chang, P. (2014) Family–wide analysis of poly(ADP–ribose) polymerase activity, Nat. Commun., 5, 4426.

    Article  PubMed  CAS  Google Scholar 

  15. Schreiber, V., Ame, J. C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier–de Murcia, J., and de Murcia, G. (2002) Poly(ADP–ribose) polymerase–2 (PARP–2) is required for efficient base excision DNA repair in association with PARP–1 and XRCC1, J. Biol. Chem., 277, 23028–23036.

    Article  PubMed  CAS  Google Scholar 

  16. De Vos, M., Schreiber, V., and Dantzer, F. (2012) The diverse roles and clinical relevance of PARPs in DNA dam–age repair: current state of the art, Biochem. Pharmacol., 84, 137–146.

    Article  PubMed  CAS  Google Scholar 

  17. Huambachano, O., Herrera, F., Rancourt, A., and Satoh, M. S. (2011) Double–stranded DNA binding domain of poly(ADP–ribose) polymerase–1 and molecular insight into the regulation of its activity, J. Biol. Chem., 286, 7149–7160.

    Article  PubMed  CAS  Google Scholar 

  18. Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome–wide identification of poly(ADP–ribosyl)ation targets in differ–ent genotoxic stress responses, Mol. Cell, 52, 272–285.

    Article  PubMed  CAS  Google Scholar 

  19. Messner, S., Altmeyer, M., Zhao, H., Pozivil, A., Roschitzki, B., Gehrig, P., Rutishauser, D., Huang, D., Caflisch, A., and Hottiger, M. O. (2010) PARP1 ADP–ribosylates lysine residues of the core histone tails, Nucleic Acids Res., 38, 6350–6362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Poirier, G. G., de Murcia, G., Jongstra–Bilen, J., Niedergang, C., and Mandel, P. (1982) Poly(ADP–ribo–syl)ation of polynucleosomes causes relaxation of chro–matin structure, Proc. Natl. Acad. Sci. USA, 79, 3423–3427.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Krietsch, J., Rouleau, M., Pic, E., Ethier, C., Dawson, T. M., Dawson, V. L., Masson, J. Y., Poirier, G. G., and Gagne, J. P. (2013) Reprogramming cellular events by poly(ADP–ribose)–binding proteins, Mol. Aspects Med., 34, 1066–1087.

    Article  PubMed  CAS  Google Scholar 

  22. Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002) Mediation of poly(ADP–ribose) polymerase–1–dependent cell death by apoptosis–inducing factor, Science, 297, 259–263.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M., and Dawson, V. L. (2003) Apoptosis inducing factor and PARP–mediated injury in the MPTP mouse model of Parkinson’s disease, Ann. N. Y. Acad. Sci., 991, 132–139.

    Article  PubMed  CAS  Google Scholar 

  24. Fouquerel, E., Goellner, E. M., Yu, Z., Gagne, J. P., Barbi de Moura, M., Feinstein, T., Wheeler, D., Redpath, P., Li, J., Romero, G., Migaud, M., Van Houten, B., Poirier, G. G., and Sobol, R. W. (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion, Cell Rep., 8, 1819–1831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ha, H. C., and Snyder, S. H. (1999) Poly(ADP–ribose) polymerase is a mediator of necrotic cell death by ATP depletion, Proc. Natl. Acad. Sci. USA, 96, 13978–13982.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Krishnakumar, R., Gamble, M. J., Frizzell, K. M., Berrocal, J. G., Kininis, M., and Kraus, W. L. (2008) Reciprocal binding of PARP–1 and histone H1 at promot–ers specifies transcriptional outcomes, Science, 319, 819–821.

    Article  PubMed  CAS  Google Scholar 

  27. Gibson, B. A., Zhang, Y., Jiang, H., Hussey, K. M., Shrimp, J. H., Lin, H., Schwede, F., Yu, Y., and Kraus, W. L. (2016) Chemical genetic discovery of PARP targets reveals a role for PARP–1 in transcription elongation, Science, 353, 45–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jwa, M., and Chang, P. (2012) PARP16 is a tail–anchored endoplasmic reticulum protein required for the PERK–and IRE1alpha–mediated unfolded protein response, Nat. Cell Biol., 14, 1223–1230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Feijs, K. L., Kleine, H., Braczynski, A., Forst, A. H., Herzog, N., Verheugd, P., Linzen, U., Kremmer, E., and Luscher, B. (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono–ADP–ribosylation, Cell Commun. Signal., 11, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mehrotra, P., Riley, J. P., Patel, R., Li, F., Voss, L., and Goenka, S. (2011) PARP–14 functions as a transcriptional switch for Stat6–dependent gene activation, J. Biol. Chem., 286, 1767–1776.

    Article  PubMed  CAS  Google Scholar 

  31. Hottiger, M. O., Hassa, P. O., Luscher, B., Schuler, H., and Koch–Nolte, F. (2010) Toward a unified nomenclature for mammalian ADP–ribosyltransferases, Trends Biochem. Sci., 35, 208–219.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q., and Lin, H. (2013) SIRT6 regulates TNF–alpha secretion through hydrolysis of long–chain fatty acyl lysine, Nature, 496, 110–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Martin, A., Tegla, C. A., Cudrici, C. D., Kruszewski, A. M., Azimzadeh, P., Boodhoo, D., Mekala, A. P., Rus, V., and Rus, H. (2015) Role of SIRT1 in autoimmune demyelination and neurodegeneration, Immunol. Res., 61, 187–197.

    Article  PubMed  CAS  Google Scholar 

  34. Kuny, C. V., and Sullivan, C. S. (2016) Virus–host interac–tions and the ARTD/PARP family of enzymes, PLoS Pathog., 12, e1005453.

    Google Scholar 

  35. Yang, C. S., Jividen, K., Spencer, A., Dworak, N., Ni, L., Oostdyk, L. T., Chatterjee, M., Kusmider, B., Reon, B., Parlak, M., Gorbunova, V., Abbas, T., Jeffery, E., Sherman, N. E., and Paschal, B. M. (2017) Ubiquitin modification by the E3 ligase/ADP–ribosyltransferase Dtx3L/Parp9, Mol. Cell, 66, 503–516 e505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Seman, M., Adriouch, S., Haag, F., and Koch–Nolte, F. (2004) Ecto–ADP–ribosyltransferases (ARTs): emerging actors in cell communication and signaling, Curr. Med. Chem., 11, 857–872.

    Article  PubMed  CAS  Google Scholar 

  37. Mashimo, M., Kato, J., and Moss, J. (2013) ADP–ribosyl–acceptor hydrolase 3 regulates poly (ADP–ribose) degrada–tion and cell death during oxidative stress, Proc. Natl. Acad. Sci. USA, 110, 18964–18969.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Niere, M., Mashimo, M., Agledal, L., Dolle, C., Kasamatsu, A., Kato, J., Moss, J., and Ziegler, M. (2012) ADP–ribosylhydrolase 3 (ARH3), not poly(ADP–ribose) glycohydrolase (PARG) isoforms, is responsible for degra–dation of mitochondrial matrix–associated poly(ADP–ribose), J. Biol. Chem., 287, 16088–16102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Slade, D., Dunstan, M. S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D., and Ahel, I. (2011) The structure and catalytic mechanism of a poly(ADP–ribose) glycohydrolase, Nature, 477, 616–620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., and Ladurner, A. G. (2013) A family of macrodomain proteins reverses cellular mono–ADP–ribosylation, Nat. Struct. Mol. Biol., 20, 508–514.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sharifi, R., Morra, R., Appel, C. D., Tallis, M., Chioza, B., Jankevicius, G., Simpson, M. A., Matic, I., Ozkan, E., Golia, B., Schellenberg, M. J., Weston, R., Williams, J. G., Rossi, M. N., Galehdari, H., Krahn, J., Wan, A., Trembath, R. C., Crosby, A. H., Ahel, D., Hay, R., Ladurner, A. G., Timinszky, G., Williams, R. S., and Ahel, I. (2013) Deficiency of terminal ADP–ribose protein glyco–hydrolase TARG1/C6orf130 in neurodegenerative disease, EMBO J., 32, 1225–1237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fontana, P., Bonfiglio, J. J., Palazzo, L., Bartlett, E., Matic, I., and Ahel, I. (2017) Serine ADP–ribosylation reversal by the hydrolase ARH3, Elife, 6, e28533.

    Google Scholar 

  43. Moss, J., Stanley, S. J., Nightingale, M. S., Murtagh, J. J., Jr., Monaco, L., Mishima, K., Chen, H. C., Williamson, K. C., and Tsai, S. C. (1992) Molecular and immunological characterization of ADP–ribosylarginine hydrolases, J. Biol. Chem., 267, 10481–10488.

    PubMed  CAS  Google Scholar 

  44. Palazzo, L., Thomas, B., Jemth, A. S., Colby, T., Leidecker, O., Feijs, K. L., Zaja, R., Loseva, O., Puigvert, J. C., Matic, I., Helleday, T., and Ahel, I. (2015) Processing of protein ADP–ribosylation by Nudix hydrolases, Biochem. J., 468, 293–301.

    Article  PubMed  CAS  Google Scholar 

  45. Talhaoui, I., Lebedeva, N. A., Zarkovic, G., Saint–Pierre, C., Kutuzov, M. M., Sukhanova, M. V., Matkarimov, B. T., Gasparutto, D., Saparbaev, M. K., Lavrik, O. I., and Ishchenko, A. A. (2016) Poly(ADP–ribose) polymerases covalently modify strand break termini in DNA fragments in vitro, Nucleic Acids Res., 44, 9279–9295.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Munnur, D., and Ahel, I. (2017) Reversible mono–ADP–ribosylation of DNA breaks, FEBS J., 284, 4002–4016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kaelin, W. G., Jr., and McKnight, S. L. (2013) Influence of metabolism on epigenetics and disease, Cell, 153, 56–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Roth, S. Y., Denu, J. M., and Allis, C. D. (2001) Histone acetyltransferases, Annu. Rev. Biochem., 70, 81–120.

    Article  PubMed  CAS  Google Scholar 

  49. Haberland, M., Montgomery, R. L., and Olson, E. N. (2009) The many roles of histone deacetylases in develop–ment and physiology: implications for disease and therapy, Nat. Rev. Genet., 10, 32–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L., and Boeke, J. D. (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromo–some stability, Genes Dev., 9, 2888–2902.

    Article  PubMed  CAS  Google Scholar 

  51. Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000) Silent information regulator 2 family of NAD–dependent histone/protein deacetylases generates a unique product, 1–O–acetyl–ADP–ribose, Proc. Natl. Acad. Sci. USA, 97, 14178–14182.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., and Horikawa, I. (2005) Evolutionarily conserved and non–conserved cellular localizations and functions of human SIRT proteins, Mol. Biol. Cell, 16, 4623–4635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000) Transcriptional silencing and longevi–ty protein Sir2 is an NAD–dependent histone deacetylase, Nature, 403, 795–800.

    Article  PubMed  CAS  Google Scholar 

  54. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000) The silencing pro–tein SIR2 and its homologs are NAD–dependent protein deacetylases, Proc. Natl. Acad. Sci. USA, 97, 5807–5811.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Senawong, T., Peterson, V. J., and Leid, M. (2005) BCL11A–dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetyla–tion and transcriptional repression, Arch. Biochem. Biophys., 434, 316–325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Vaquero, A., Scher, M., Lee, D., Erdjument–Bromage, H., Tempst, P., and Reinberg, D. (2004) Human SirT1 inter–acts with histone H1 and promotes formation of facultative heterochromatin, Mol. Cell, 16, 93–105.

    Article  PubMed  CAS  Google Scholar 

  57. Martinez–Redondo, P., and Vaquero, A. (2013) The diver–sity of histone versus nonhistone sirtuin substrates, Genes Cancer, 4, 148–163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003) Ku70 suppresses the apop–totic translocation of Bax to mitochondria, Nat. Cell Biol., 5, 320–329.

    Article  PubMed  CAS  Google Scholar 

  59. Bosch–Presegue, L., and Vaquero, A. (2011) The dual role of sirtuins in cancer, Genes Cancer, 2, 648–662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kaidi, A., Weinert, B. T., Choudhary, C., and Jackson, S. P. (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation, Science, 329, 1348–1353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lin, S. J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004) Calorie restriction extends yeast life span by lower–ing the level of NADH, Genes Dev., 18, 12–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Desquiret–Dumas, V., Gueguen, N., Leman, G., Baron, S., Nivet–Antoine, V., Chupin, S., Chevrollier, A., Vessieres, E., Ayer, A., Ferre, M., Bonneau, D., Henrion, D., Reynier, P., and Procaccio, V. (2013) Resveratrol induces a mitochondrial complex I–dependent increase in NADH oxidation responsible for sirtuin activation in liver cells, J. Biol. Chem., 288, 36662–36675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lagouge, M., Argmann, C., Gerhart–Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., and Auwerx, J. (2006) Resveratrol improves mitochon–drial function and protects against metabolic disease by activating SIRT1 and PGC–1alpha, Cell, 127, 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  64. Jiang, W., Wang, S., Xiao, M., Lin, Y., Zhou, L., Lei, Q., Xiong, Y., Guan, K. L., and Zhao, S. (2011) Acetylation reg–ulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase, Mol. Cell, 43, 33–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+–dependent tubulin deacetylase, Mol. Cell, 11, 437–444.

    PubMed  CAS  Google Scholar 

  66. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C. F., and Steegborn, C. (2008) Substrates and reg–ulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5, J. Mol. Biol., 382, 790–801.

    Article  PubMed  CAS  Google Scholar 

  67. Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V. (2011) SIRT6 promotes DNA repair under stress by activating PARP1, Science, 332, 1443–1446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q., and Lin, H. (2011) Sirt5 is a NAD–dependent protein lysine demalonylase and desuccinylase, Science, 334, 806–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W., and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells, Cell, 126, 941–954.

    Article  PubMed  CAS  Google Scholar 

  70. Sassone–Corsi, P. (2016) The epigenetic and metabolic lan–guage of the circadian clock, in A Time for Metabolism and Hormones (Sassone–Corsi, P., and Christen, Y., eds.), Springer, pp. 1–11.

    Google Scholar 

  71. Imai, S., and Guarente, L. (2014) NAD+ and sirtuins in aging and disease, Trends Cell. Biol., 24, 464–471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cao, Y., Jiang, X., Ma, H., Wang, Y., Xue, P., and Liu, Y. (2016) SIRT1 and insulin resistance, J. Diabetes Complications, 30, 178–183.

    Article  PubMed  Google Scholar 

  73. Lee, H. C. (2012) Cyclic ADP–ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization, J. Biol. Chem., 287, 31633–31640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sumoza–Toledo, A., and Penner, R. (2011) TRPM2: a mul–tifunctional ion channel for calcium signalling, J. Physiol., 589, 1515–1525.

    Article  PubMed  CAS  Google Scholar 

  75. Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A. L., Ortolan, E., Vaisitti, T., and Aydin, S. (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology, Physiol. Rev., 88, 841–886.

    Article  PubMed  CAS  Google Scholar 

  76. Bruzzone, S., Guida, L., Zocchi, E., Franco, L., and De Flora, A. (2001) Connexin 43 hemi channels mediate Ca2+–regulated transmembrane NAD+ fluxes in intact cells, FASEB J., 15, 10–12.

    Article  PubMed  CAS  Google Scholar 

  77. Podesta, M., Benvenuto, F., Pitto, A., Figari, O., Bacigalupo, A., Bruzzone, S., Guida, L., Franco, L., Paleari, L., Bodrato, N., Usai, C., De Flora, A., and Zocchi, E. (2005) Concentrative uptake of cyclic ADP–ribose generated by BST–1+ stroma stimulates proliferation of human hematopoietic progenitors, J. Biol. Chem., 280, 5343–5349.

    Article  PubMed  CAS  Google Scholar 

  78. Franco, L., Guida, L., Bruzzone, S., Zocchi, E., Usai, C., and De Flora, A. (1998) The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP–ribose across membranes, FASEB J., 12, 1507–1520.

    Article  PubMed  CAS  Google Scholar 

  79. Song, E. K., Rah, S. Y., Lee, Y. R., Yoo, C. H., Kim, Y. R., Yeom, J. H., Park, K. H., Kim, J. S., Kim, U. H., and Han, M. K. (2011) Connexin–43 hemichannels mediate cyclic ADP–ribose generation and its Ca2+–mobilizing activity by NAD+/cyclic ADP–ribose transport, J. Biol. Chem., 286, 44480–44490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhao, Y. J., Zhu, W. J., Wang, X. W., Zhang, L. H., and Lee, H. C. (2015) Determinants of the membrane orienta–tion of a calcium signaling enzyme CD38, Biochim. Biophys. Acta, 1853, 2095–2103.

    Article  PubMed  CAS  Google Scholar 

  81. Bieganowski, P., and Brenner, C. (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans, Cell, 117, 495–502.

    Article  PubMed  CAS  Google Scholar 

  82. Kulikova, V., Shabalin, K., Nerinovski, K., Dolle, C., Niere, M., Yakimov, A., Redpath, P., Khodorkovskiy, M., Migaud, M. E., Ziegler, M., and Nikiforov, A. (2015) Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells, J. Biol. Chem., 290, 27124–27137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Guillemin, G. J., and Brew, B. J. (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s dis–ease, Redox Rep., 7, 199–206.

    Article  PubMed  CAS  Google Scholar 

  84. Bahn, A., Hagos, Y., Reuter, S., Balen, D., Brzica, H., Krick, W., Burckhardt, B. C., Sabolic, I., and Burckhardt, G. (2008) Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13), J. Biol. Chem., 283, 16332–16341.

    Article  PubMed  CAS  Google Scholar 

  85. Gopal, E., Miyauchi, S., Martin, P. M., Ananth, S., Roon, P., Smith, S. B., and Ganapathy, V. (2007) Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract, Pharm. Res., 24, 575–584.

    Article  PubMed  CAS  Google Scholar 

  86. Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98), J. Biol. Chem., 273, 23629–23632.

    Article  PubMed  CAS  Google Scholar 

  87. Pillai, S. M., and Meredith, D. (2011) SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in Xenopus laevis oocytes, J. Biol. Chem., 286, 2455–2460.

    Article  PubMed  CAS  Google Scholar 

  88. Nikiforov, A., Dolle, C., Niere, M., and Ziegler, M. (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular pre–cursors to mitochondrial NAD generation, J. Biol. Chem., 286, 21767–21778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. VanLinden, M. R., Dolle, C., Pettersen, I. K., Kulikova, V. A., Niere, M., Agrimi, G., Dyrstad, S. E., Palmieri, F., Nikiforov, A. A., Tronstad, K. J., and Ziegler, M. (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells, J. Biol. Chem., 290, 27644–27659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pittelli, M., Formentini, L., Faraco, G., Lapucci, A., Rapizzi, E., Cialdai, F., Romano, G., Moneti, G., Moroni, F., and Chiarugi, A. (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool, J. Biol. Chem., 285, 34106–34114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Dolle, C., Niere, M., Lohndal, E., and Ziegler, M. (2010) Visualization of subcellular NAD pools and intra–organel–lar protein localization by poly–ADP–ribose formation, Cell. Mol. Life Sci., 67, 433–443.

    Article  PubMed  CAS  Google Scholar 

  92. Van Linden, M. R., Niere, M., Nikiforov, A. A., Ziegler, M., and Dolle, C. (2017) Compartment–specific poly–ADP–ribose formation as a biosensor for subcellular NAD pools, Methods Mol. Biol., 1608, 45–56.

    Article  CAS  Google Scholar 

  93. Agrimi, G., Russo, A., Scarcia, P., and Palmieri, F. (2012) The human gene SLC25A17 encodes a peroxisomal trans–porter of coenzyme A, FAD and NAD+, Biochem. J., 443, 241–247.

    Article  PubMed  CAS  Google Scholar 

  94. Senesi, S., Csala, M., Marcolongo, P., Fulceri, R., Mandl, J., Banhegyi, G., and Benedetti, A. (2010) Hexose–6–phos–phate dehydrogenase in the endoplasmic reticulum, Biol. Chem., 391, 1–8.

    Article  PubMed  CAS  Google Scholar 

  95. Fabrizio, G., Di Paola, S., Stilla, A., Giannotta, M., Ruggiero, C., Menzel, S., Koch–Nolte, F., Sallese, M., and Di Girolamo, M. (2015) ARTC1–mediated ADP–ribosyla–tion of GRP78/BiP: a new player in endoplasmic reticulum stress responses, Cell. Mol. Life Sci., 72, 1209–1225.

    Article  PubMed  CAS  Google Scholar 

  96. Williams, P. A., Harder, J. M., Foxworth, N. E., Cochran, K. E., Philip, V. M., Porciatti, V., Smithies, O., and John, S. W. (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice, Science, 355, 756–760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A. A., and Pasinetti, G. M. (2013) Nicotinamide riboside restores cog–nition through an upregulation of proliferator–activated receptor–gamma coactivator 1alpha regulated beta–secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models, Neurobiol. Aging, 34, 1581–1588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brown, K. D., Maqsood, S., Huang, J. Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E., and Jaffrey, S. R. (2014) Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise–induced hear–ing loss, Cell Metab., 20, 1059–1068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Trammell, S. A., Weidemann, B. J., Chadda, A., Yorek, M. S., Holmes, A., Coppey, L. J., Obrosov, A., Kardon, R. H., Yorek, M. A., and Brenner, C. (2016) Nicotinamide ribo–side opposes type 2 diabetes and neuropathy in mice, Sci. Rep., 6, 26933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Canto, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez–Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour–Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., and Auwerx, J. (2012) The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high–fat diet–induced obesity, Cell Metab., 15, 838–847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Khan, N. A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsstrom, S., Pasila, L., Velagapudi, V., Carroll, C. J., Auwerx, J., and Suomalainen, A. (2014) Effective treat–ment of mitochondrial myopathy by nicotinamide ribo–side, a vitamin B3, EMBO Mol. Med., 6, 721–731.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A. A., Li, W., Leoni, V., Schon, E. A., Dantzer, F., Auwerx, J., Viscomi, C., and Zeviani, M. (2014) NAD+–dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease, Cell Metab., 19, 1042–1049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yoshino, J., Mills, K. F., Yoon, M. J., and Imai, S. (2011) Nicotinamide mononucleotide, a key NAD+ intermedi–ate, treats the pathophysiology of diet–and age–induced diabetes in mice, Cell Metab., 14, 528–536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., and Sadoshima, J. (2014) Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion, PLoS One, 9, e98972.

    Google Scholar 

  105. Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., and Imai, S. I. (2016) Long–term administration of nicotinamide mononucleotide mitigates age–associated physiological decline in mice, Cell Metab., 24, 795–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikiforov.

Additional information

Original Russian Text © V. A. Kulikova, D. V. Gromyko, A. A. Nikiforov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 7, pp. 987–1001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, V.A., Gromyko, D.V. & Nikiforov, A.A. The Regulatory Role of NAD in Human and Animal Cells. Biochemistry Moscow 83, 800–812 (2018). https://doi.org/10.1134/S0006297918070040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918070040

Keywords

Navigation