Skip to main content
Log in

ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the “macro domain” cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ART:

ADP-ribosyltransferase

CHO cells:

Chinese hamster ovary cells

DTT:

Dithiothreitol

ER:

Endoplasmic reticulum

GST:

Glutatione S-transferase

HeLa cells:

Human cervix adenocarcinoma cells

References

  1. Althaus FR, Hofferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter PL, Realini CA (1994) Histone shuttling by poly ADP-ribosylation. Mol Cell Biochem 138(1–2):53–59

    Article  CAS  PubMed  Google Scholar 

  2. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 94(14):7303–7307

    Article  PubMed Central  PubMed  Google Scholar 

  3. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  PubMed Central  PubMed  Google Scholar 

  4. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528

    Article  CAS  PubMed  Google Scholar 

  5. Curtin NJ (2012) Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors. Elsevier B.V. http://www.sciencedirect.com/science/article/pii/S1740675712000060. Accessed 29

  6. Dani N, Barbosa AJ, Del Rio A, Di Girolamo M (2013) ADP-Ribosylated proteins as old and new drug targets for anticancer therapy: the example of ARF6. Curr Pharm Des 19(4):624–633

    Article  CAS  PubMed  Google Scholar 

  7. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954

    Article  CAS  PubMed  Google Scholar 

  8. Dani N, Mayo E, Stilla A, Marchegiani A, Di Paola S, Corda D, Di Girolamo M (2011) Mono-ADP-ribosylation of the G Protein βγ Dimer Is Modulated by Hormones and Inhibited by Arf6. J Biol Chem 286(8):5995–6005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D (1995) Evidence that the 50-kDa substrate of brefeldin A-dependent ADP- ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex. Proc Natl Acad Sci U S A 92(15):7065–7069

    Article  PubMed Central  PubMed  Google Scholar 

  10. Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Scarpa ES, Fabrizio G, Di Girolamo M (2013) A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J 280(15):3551–3562

    Article  CAS  PubMed  Google Scholar 

  12. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22(9):1953–1958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Di Girolamo M, Dani N, Stilla A, Corda D (2005) Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J 272(18):4565–4575

    Article  PubMed  Google Scholar 

  14. Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729

    Article  CAS  PubMed  Google Scholar 

  15. Okazaki IJ, Moss J (1999) Characterization of glycosylphosphatidylinositiol-anchored, secreted, and intracellular vertebrate mono-ADP-ribosyltransferases. Annu Rev Nutr 19:485–509

    Article  CAS  PubMed  Google Scholar 

  16. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219

    Article  CAS  PubMed  Google Scholar 

  17. Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M (2012) PARP16/ARTD15 Is a novel endoplasmic-reticulum-associated Mono-ADP-ribosyltransferase that interacts with, and modifies Karyopherin- < beta > 1. PLoS One 7(6):e37352

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69

    Article  CAS  PubMed  Google Scholar 

  19. Glowacki G, Braren R, Firner K, Nissen M, Kuhl M, Reche P, Bazan F, Cetkovic-Cvrlje M, Leiter E, Haag F, Koch-Nolte F (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 11(7):1657–1670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Paone G, Wada A, Stevens LA, Matin A, Hirayama T, Levine RL, Moss J (2002) ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci U S A 99(12):8231–8235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19(4):571–582

    Article  CAS  PubMed  Google Scholar 

  22. Zolkiewska A, Moss J (1993) Integrin alpha 7 as substrate for a glycosylphosphatidylinositol- anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268(34):25273–25276

    CAS  PubMed  Google Scholar 

  23. Okazaki IJ, Moss J (1998) Glycosylphosphatidylinositol-anchored and secretory isoforms of mono- ADP-ribosyltransferases. J Biol Chem 273(37):23617–23620

    Article  CAS  PubMed  Google Scholar 

  24. Corda D, Di Girolamo M (2002) Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling. Sci STKE 2002 (163):PE53

  25. Stilla A, Di Paola S, Dani N, Krebs C, Arrizza A, Corda D, Haag F, Koch-Nolte F, Di Girolamo M (2011) Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells. Eur J Cell Biol 90(8):665–677

    Article  CAS  PubMed  Google Scholar 

  26. Shiu RP, Pouyssegur J, Pastan I (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A 74(9):3840–3844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306(5941):387–389

    Article  CAS  PubMed  Google Scholar 

  28. Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102(5):1558–1566

    Article  CAS  PubMed  Google Scholar 

  29. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46(2):291–300

    Article  CAS  PubMed  Google Scholar 

  30. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26(8):504–510

    Article  CAS  PubMed  Google Scholar 

  31. Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353(6346):726–730

    Article  CAS  PubMed  Google Scholar 

  32. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    Article  CAS  PubMed  Google Scholar 

  33. Romisch K (2005) Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol 21:435–456

    Article  CAS  PubMed  Google Scholar 

  34. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  35. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  36. Merksamer PI, Papa FR (2010) The UPR and cell fate at a glance. J Cell Sci 123(Pt 7):1003–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125

    Article  CAS  PubMed  Google Scholar 

  38. Laitusis AL, Brostrom MA, Brostrom CO (1999) The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem 274(1):486–493

    Article  CAS  PubMed  Google Scholar 

  39. Leno GH, Ledford BE (1989) ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress. Eur J Biochem 186(1–2):205–211

    Article  CAS  PubMed  Google Scholar 

  40. Staddon JM, Bouzyk MM, Rozengurt E (1992) Interconversion of GRP78/BiP. A novel event in the action of Pasteurella multocida toxin, bombesin, and platelet-derived growth factor. J Biol Chem 267(35):25239–25245

    CAS  PubMed  Google Scholar 

  41. Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D (2012) ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 198(3):371–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M (2009) Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci U S A 106(11):4243–4248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Neuvonen M, Ahola T (2009) Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385(1):212–225

    Article  CAS  PubMed  Google Scholar 

  44. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schuler H, Luscher B (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21(3):462–475

    Article  CAS  PubMed  Google Scholar 

  45. Lupi R, Corda D, Di Girolamo M (2000) Endogenous ADP-ribosylation of the G protein beta subunit prevents the inhibition of type 1 adenylyl cyclase. J Biol Chem 275(13):9418–9424

    Article  CAS  PubMed  Google Scholar 

  46. Di Girolamo M, D’Arcangelo D, Cacciamani T, Gierschik P, Corda D (1992) K-ras transformation greatly increases the toxin-dependent ADP-ribosylation of GTP binding proteins in thyroid cells. Involvement of an inhibitor of the ADP-ribosylation reaction. J Biol Chem 267(24):17397–17403

    PubMed  Google Scholar 

  47. Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381

    Article  CAS  PubMed  Google Scholar 

  48. Koch-Nolte F, Glowacki G, Bannas P, Braasch F, Dubberke G, Ortolan E, Funaro A, Malavasi F, Haag F (2005) Use of genetic immunization to raise antibodies recognizing toxin-related cell surface ADP-ribosyltransferases in native conformation. Cell Immunol 236(1–2):66–71

    Article  CAS  PubMed  Google Scholar 

  49. Glowacki G, Braren R, Cetkovic-Cvrlje M, Leiter EH, Haag F, Koch-Nolte F (2001) Structure, chromosomal localization, and expression of the gene for mouse ecto-mono(ADP-ribosyl)transferase ART5. Gene 275(2):267–277

    Article  CAS  PubMed  Google Scholar 

  50. Carlsson L, Lazarides E (1983) ADP-ribosylation of the Mr 83,000 stress-inducible and glucose-regulated protein in avian and mammalian cells: modulation by heat shock and glucose starvation. Proc Natl Acad Sci U S A 80(15):4664–4668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Soman G, Mickelson JR, Louis CF, Graves DJ (1984) NAD: guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120(3):973–980

    Article  CAS  PubMed  Google Scholar 

  52. Dolle C, Niere M, Lohndal E, Ziegler M (2010) Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 67(3):433–443

    Article  PubMed  Google Scholar 

  53. Taniyama Y, Kuroki R, Omura F, Seko C, Kikuchi M (1991) Evidence for intramolecular disulfide bond shuffling in the folding of mutant human lysozyme. J Biol Chem 266(10):6456–6461

    CAS  PubMed  Google Scholar 

  54. Thastrup O (1990) Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin. Agents Actions 29(1–2):8–15

    Article  CAS  PubMed  Google Scholar 

  55. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Antonio Tamburro for protein identification by MALDI-MS analysis, Elena Fontana for preparation of Figures, Marco Scardapane for his advice on Statistical analysis and Chris Berrie for editorial assistance. We thank David Ron (University of Cambridege, UK) for providing us the Flag-GRP78 plasmid. We gratefully acknowledge the financial support of the Banca Popolare dell’Emilia Romagna, the Italian Association for Cancer Research (AIRC IG 11652), and the Deutsche Forschungsgemeinschaft (SFB877-A5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Di Girolamo.

Additional information

G. Fabrizio and S. Di Paola contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabrizio, G., Di Paola, S., Stilla, A. et al. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell. Mol. Life Sci. 72, 1209–1225 (2015). https://doi.org/10.1007/s00018-014-1745-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1745-6

Keywords

Navigation