Skip to main content
Log in

Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Although glutathione S-transferase (GST, EC 2.5.1.18) is thought to play important roles in abiotic stress, limited information is available regarding the function of its gene in grapes. In this study, a GST gene from grape, VvGSTF13, was cloned and functionally characterized. Transgenic Arabidopsis plants containing this gene were normal in terms of growth and maturity compared with control plants but had enhanced resistance to salt, drought, and methyl viologen stress. The increased tolerance of the transgenic plants correlated with changes in activities of antioxidative enzymes. Our results indicate that the gene from grape plays a positive role in improving tolerance to salinity, drought, and methyl viologen stresses in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDNB:

1-chloro-2,4-dinitrobenzene

CP:

control plants

GST:

glutathione S-transferases

MV:

methyl viologen

OE:

GST-overexpressing lines of Arabidopsis

ROS:

reactive oxygen species

T:

transgenic plant generation

References

  1. Bowler, C., Montagu, M. V., and Inze, D. (1992) Superoxide dismutase and stress tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 83–116.

    Article  CAS  Google Scholar 

  2. Le Martret, B., Poage, M., Shiel, K., Nugent, G. D., and Dix, P. J. (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered antioxidant metabolism and improved abiot-ic stress tolerance, Plant Biotechnol. J., 9, 661–673.

    Article  PubMed  CAS  Google Scholar 

  3. Cummins, I., Dixon, D. P., Freitag-Pohl, S., Skipsey, M., and Edwards, R. (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification, Drug Metab. Rev., 43, 266–280.

    Article  PubMed  CAS  Google Scholar 

  4. Dixon, D. P., Lapthorn, A., and Edwards, R. (2002) Plant glutathione transferases, Genome Biol., 3, REVIEWS3004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Edwards, R., and Dixon, D. P. (2005) Plant glutathione transferases, Methods Enzymol., 401, 169–186.

    Article  PubMed  CAS  Google Scholar 

  6. Edwards, R., Del Buono, D., Fordham, M., Skipsey, M., Brazier, M., Dixon, D. P., and Cummings, I. (2005) Differential induction of glutathione transferases and glu-cosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners, Z. Naturforsch. C, 60, 307–316.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., and Yang, C. (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ablity to scavenge reacive oxygen species, Plant Cell Tiss. Organ. Cult., 117, 99–112.

    Article  CAS  Google Scholar 

  8. Chen, J. H., Jiang, H. W., Hsieh, E. J., Chen, H. Y., Chien, C. T., Hsieh, H. L., and Lin, T. P. (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid, Plant Physiol., 158, 340–351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yu, T., Li, Y. S., Chen, X. F., Hu, J., Chang, X., and Zhu, Y. G. (2003) Transgenic tobacco plants overexpressing cot-ton glutathione S-transferase (GST) show enhanced resist-ance to methyl viologen, J. Plant Physiol., 160, 1305–1311.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar, S., Asif, M. H., Chakrabarty, D., Tripathi, R. D., Dubey, R. S., and Trivedi, P. K. (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses, J. Hazard. Mater., 248-249, 228-237.

    Google Scholar 

  11. Seppanen, M. M., Cardi, T., Borg Hyokki, M., and Pehu, E. (2000) Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum com-mersonii, sensitive S. tuberosum and their interspecific somatic hybrids, Plant Sci., 153, 125–133.

    Article  PubMed  CAS  Google Scholar 

  12. Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chal-cone synthase in cell cultures, Plant Cell, 12, 1939–1950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mauch, F., and Dudler, R. (1993) Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack, Plant Physiol., 102, 1193–1201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Takahashi, Y., and Nagata, T. (1992) parB: an auxin-regu-lated gene encoding glutathione S-transferase, Proc. Natl. Acad. Sci. USA, 89, 56–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhou, J., and Goldsbrough, P. B. (1993) An Arabidopsis gene with homology to glutathione S-transferases is regu-lated by ethylene, Plant Mol. Biol., 22, 517–523.

    Article  PubMed  CAS  Google Scholar 

  16. Xu, F., Lagudah, E. S., Moose, S. P., and Riechers, D. E. (2002) Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome-and organ-specific expression in hexaploid wheat, Plant Physiol., 130, 362–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wagner, U., Edwards, R., Dixon, D. P., and Mauch, F. (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family, Plant Mol. Biol., 49, 515–532.

    Article  PubMed  CAS  Google Scholar 

  18. Jayaprakasha, G. K., Singh, R. P., and Sakariah, K. K. (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro, Food Chemistry, 73, 285–290.

    Article  CAS  Google Scholar 

  19. Xu, J., Tian, Y. S., Peng, R. H., Xiong, A. S., Zhu, B., Jin, X. F., Gao, F., Fu, X. Y., Hou, X. L., and Yao, Q. H. (2010) AtCPK6, a functionally redundant and positive regulatorinvolved in salt/drought stress tolerance in Arabidopsis, Planta, 231, 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., and Chua, N. H. (2006) Agrobacterium-mediated transforma-tion of Arabidopsis thaliana using the floral dip method, Nat. Protoc., 1, 641–646.

    Article  PubMed  CAS  Google Scholar 

  21. Ji, W., Zhu, Y., Li, Y., Yang, L., Zhao, X., Cai, H., and Bai, X. (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco, Biotechnol. Lett., 32, 1173–1179.

    CAS  Google Scholar 

  22. Cakmak, I., and Horst, W. J. (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max), Physiol. Plant., 83, 463–468.

    Article  CAS  Google Scholar 

  23. Beyer, W. F., Jr., and Fridovich, I. (1987) Assaying for super-oxide dismutase activity: some large consequences of minor changes in conditions, Anal. Biochem., 161, 559–566.

    Article  PubMed  CAS  Google Scholar 

  24. Macadam, J. W., Sharp, R. E., and Nelson, C. J. (1992) Peroxidase activity in the leaf elongation zone of tall fescue. II. Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone, Plant Physiol., 99, 879–885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Marrs, K. A. (1996) The functions and regulation of glu-tathione S-transferases in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 127–158.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., and Yang, C. (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species, Plant Cell Tiss. Organ. Cult., 117, 99–112.

    Article  CAS  Google Scholar 

  27. Jiang, Y., Yang, B., Harris, N. S., and Deyholos, M. R. (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots, J. Exp. Bot., 58, 3591–3607.

    Article  PubMed  CAS  Google Scholar 

  28. Roxas, V. P., Lodhi, S. A., Garett, D. K., Mahan, J. R., anad Allen, R. D. (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-trans-ferase/glutathione peroxidase, Plant Cell Physiol., 41, 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  29. Kwon, S. Y., Ahn, Y. O., Lee, H. S., and Kwak, S. S. (2001) Biochemical characterization of transgenic tobacco plant expressing a human dehydroascorbate reductase, J. Biochem. Mol. Biol., 34, 316–321.

    CAS  Google Scholar 

  30. Hassan, H. M., and Fridovich, I. (1977) Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen, J. Biol. Chem., 252, 7667–7672.

    PubMed  CAS  Google Scholar 

  31. Lee, Y. P., Kim, S. H., Bang, J. W., Lee, H. S., Kwak, S. S., and Kwon, S. Y. (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxi-dant enzymes in chloroplasts, Plant Cell Rep., 26, 591–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-257, March 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zheng, AQ., Xing, XJ. et al. Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress. Biochemistry Moscow 83, 755–765 (2018). https://doi.org/10.1134/S0006297918060135

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918060135

Keywords

Navigation