Skip to main content
Log in

Downregulation of LINC00894-002 Contributes to Tamoxifen Resistance by Enhancing the TGF-β Signaling Pathway

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tamoxifen is a widely used personalized medicine for estrogen receptor (ER)-positive breast cancer, but approximately 30% of patients receiving the treatment relapse due to tamoxifen resistance (TamR). Recently, several reports have linked lncRNAs to cancer drug resistance. However, the role of lncRNAs in TamR is unclear. To identify TamR-related lncRNAs, we first used a bioinformatic approach to predict whether they have connection with known TamR-associated genes by starBase v2.0 and divided them into two groups. Group A contains lncRNAs that connect with known TamR genes and group B contains lncRNAs that show no predicted interaction. Among the 12 lncRNAs in group A, 58.3% of them are either up- or downregulated in MCF-7/TamR cells compared to the sensitive cells. In contrast, the expression levels of all group B lncRNAs are not changed in MCF-7/TamR cells. LINC00894-002 exhibits the most sophisticated network pattern and is the most downregulated lncRNA in MCF-7/TamR cells. Moreover, we find that LINC00894-002 is directly upregulated by ERα. Knocking down LINC00894-002 downregulates expression of miR-200a-3p and miR-200b-3p, upregulates the expression of TGF-β2 and ZEB1, and finally contributes to TamR. Herein, we report the first case of an inhibitory lncRNA against TamR through the miR-200-TGF-β2-ZEB1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASO:

antisense oligonucleotide

ChIP:

chromatin immunoprecipitation

ER:

estrogen receptor

lncRNAs:

long noncoding RNAs

SRB:

sulforhodamine B

TamR:

tamoxifen resistance

References

  1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015) Global cancer statistics, 2012, CA Cancer J. Clin., 65, 87–108.

    Article  PubMed  Google Scholar 

  2. Criscitiello, C., Fumagalli, D., Saini, K. S., and Loi, S. (2010) Tamoxifen in early-stage estrogen receptor-positive breast cancer: overview of clinical use and molecular bio-markers for patient selection, Onco Targets Ther., 4, 1–11.

    PubMed  PubMed Central  Google Scholar 

  3. Garcia-Becerra, R., Santos, N., Diaz, L., and Camacho, J. (2012) Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance, Int. J. Mol. Sci., 14, 108–145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xia, H., and Hui, K. M. (2014) Mechanism of cancer drug resistance and the involvement of noncoding RNAs, Curr. Med. Chem., 21, 3029–3041.

    Article  PubMed  CAS  Google Scholar 

  5. Manavalan, T. T., Teng, Y., Litchfield, L. M., Muluhngwi, P., Al-Rayyan, N., and Klinge, C. M. (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells, PLoS One., 8, e62334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gibb, E. A., Brown, C. J., and Lam, W. L. (2011) The functional role of long non-coding RNA in human carci-nomas, Mol. Cancer, 10, 1.

    Article  CAS  Google Scholar 

  7. Liu, Z., Sun, M., Lu, K., Liu, J., Zhang, M., Wu, W., De, W., Wang, Z., and Wang, R. (2013) The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21 WAF1/CIP1 expression, PloS One, 8, e77293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Xue, X., Yang, Y. A., Zhang, A., Fong, K. W., Kim, J., Song, B., Li, S., Zhao, J. C., and Yu, J. (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer, Oncogene, 35, 2746–2755.

    Article  PubMed  CAS  Google Scholar 

  9. Godinho, M., Meijer, D., Setyono-Han, B., Dorssers, L. C., and van Agthoven, T. (2011) Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells, J. Cell. Physiol., 226, 1741–1749.

    Article  PubMed  CAS  Google Scholar 

  10. Li, X., Wu, Y., Liu, A., and Tang, X. (2016) Long non-cod-ing RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1alpha feedback regu-latory loop, Tumour Biol., 37, 14733–14743.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, H. Y., Liang, F., Zhang, J. W., Wang, F., Wang, L., and Kang, X. G. (2017) Effects of long noncoding RNA–ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205, Cancer Chemother. Pharmacol., 79, 327–337.

    Article  PubMed  CAS  Google Scholar 

  12. Caia, Y., He, J., and Zhang, D. (2016) Suppression of long non-coding RNA CCAT2 improves tamoxifen-resistant breast cancer cells’ response to tamoxifen, Mol. Biol., 50, 725–730.

    Article  CAS  Google Scholar 

  13. Niknafs, Y. S., Han, S., Ma, T., Speers, C., Zhang, C., Wilder-Romans, K., Iyer, M. K., Pitchiaya, S., Malik, R., Hosono, Y., Prensner, J. R., Poliakov, A., Singhal, U., Xiao, L., Kregel, S., Siebenaler, R. F., Zhao, S. G., Uhl, M., Gawronski, A., Hayes, D. F., Pierce, L. J., Cao, X., Collins, C., Backofen, R., Sahinalp, C. S., Rae, J. M., Chinnaiyan, A. M., and Feng, F. Y. (2016) The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression, Nat. Commun., 7, 12791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014) starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res., 42, D92–97.

    Article  PubMed  CAS  Google Scholar 

  15. Lu, M., Ding, K., Zhang, G., Yin, M., Yao, G., Tian, H., Lian, J., Liu, L., Liang, M., Zhu, T., and Sun, F. (2015) MicroRNA-320a sensitizes tamoxifen-resistant breast can-cer cells to tamoxifen by targeting ARPP-19 and ERRgamma, Sci. Rep., 5, 8735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pauwels, B., Korst, A. E., de Pooter, C. M., Pattyn, G. G., Lambrechts, H. A., Baay, M. F., Lardon, F., and Vermorken, J. B. (2003) Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies, Cancer Chemother. Pharmacol., 51, 221–226.

    PubMed  CAS  Google Scholar 

  17. Vichai, V., and Kirtikara, K. (2006) Sulforhodamine B col-orimetric assay for cytotoxicity screening, Nat. Protoc., 1, 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  18. Volders, P.-J., Helsens, K., Wang, X., Menten, B., Martens, L., Gevaert, K., Vandesompele, J., and Mestdagh, P. (2013) LNCipedia: a database for annotated human lncRNA tran-script sequences and structures, Nucleic Acids Res., 41, D246–D251.

    Article  PubMed  CAS  Google Scholar 

  19. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res., doi: 10.1093/nar/gkx247 [Epub ahead of print].

    Google Scholar 

  20. Dias, N., and Stein, C. (2002) Antisense oligonucleotides: basic concepts and mechanisms, Mol. Canc. Ther., 1, 347–355.

    CAS  Google Scholar 

  21. Li, J., Han, L., Roebuck, P., Diao, L., Liu, L., Yuan, Y., Weinstein, J. N., and Liang, H. (2015) TANRIC: an inter-active open platform to explore the function of lncRNAs in cancer, Cancer Res., 75, 3728–3737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. MacCallum, J., Keen, J., Bartlett, J., Thompson, A., Dixon, J., and Miller, W. (1996) Changes in expression of transforming growth factor beta mRNA isoforms in patients undergoing tamoxifen therapy, Br. J. Cancer, 74, 474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Arteaga, C. L., Koli, K. M., Dugger, T. C., and Clarke, R. (1999) Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transform-ing growth factor-β, J. Natl. Cancer Inst., 91, 46–53.

    Article  PubMed  CAS  Google Scholar 

  24. Yuan, J-h, Yang, F., Wang, F., Ma, J-z, Guo, Y-j, Tao, Q-f, Liu, F., Pan, W., Wang, T-t, and Zhou, C-c. (2014) A long noncoding RNA activated by TGF-β promotes the inva-sion-metastasis cascade in hepatocellular carcinoma, Cancer Cell, 25, 666–681.

    Article  PubMed  CAS  Google Scholar 

  25. Wilusz, J. E., Sunwoo, H., and Spector, D. L. (2009) Long noncoding RNAs: functional surprises from the RNA world, Genes Dev., 23, 1494–1504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, J., Ye, C., Xiong, H., Shen, Y., Lu, Y., Zhou, J., and Wang, L. (2016) Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication, Oncotarget, 8, 5508–5522.

    PubMed Central  Google Scholar 

  27. Buck, M. B., and Knabbe, C. (2006) TGF-beta signaling in breast cancer, Ann. N. Y. Acad. Sci., 1089, 119–126.

    Article  PubMed  CAS  Google Scholar 

  28. Lin, S., and Gregory, R. I. (2015) MicroRNA biogenesis pathways in cancer, Nat. Rev. Cancer, 15, 321–333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Wang.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-408, February 19, 2018.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, M., Sun, H. et al. Downregulation of LINC00894-002 Contributes to Tamoxifen Resistance by Enhancing the TGF-β Signaling Pathway. Biochemistry Moscow 83, 603–611 (2018). https://doi.org/10.1134/S0006297918050139

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918050139

Keywords

Navigation