Skip to main content
Log in

Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MID:

middle domain in Ago proteins

miRISC:

microRNA-containing RISC

miRNA:

microRNA

PAZ:

PIWI-Argonaute-Zwille domain

piRNA:

PIWI interacting RNA

PIWI:

P-element induced wimpy testis

pri-miPHK:

primary miRNA

RISC:

RNA-induced silencing complex

siRNA:

small interfering RNA

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  2. Baulcombe, D. C. (1996) RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants, Plant Mol. Biol., 32, 79–88.

    Article  PubMed  CAS  Google Scholar 

  3. Ratcliff, F., Harrison, B. D., and Baulcombe, D. C. (1997) A similarity between viral defense and gene silencing in plants, Science, 276, 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  4. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  5. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs, Genes Dev., 15, 188–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development, Embo J., 17, 170–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hutvagner, G., and Simard, M. J. (2008) Argonaute pro-teins: key players in RNA silencing, Nat. Rev. Mol. Cell Biol., 9, 22–32.

    Article  PubMed  CAS  Google Scholar 

  9. Makarova, K. S., Wolf, Y. I., van der Oost, J., and Koonin, E. V. (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements, Biol. Direct, 4, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Swarts, D. C., Makarova, K., Wang, Y., Nakanishi, K., Ketting, R. F., Koonin, E. V., Patel, D. J., and van der Oost, J. (2014) The evolutionary journey of Argonaute pro-teins, Nat. Struct. Mol. Biol., 21, 743–753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zaratiegui, M., Irvine, D. V., and Martienssen, R. A. (2007) Noncoding RNAs and gene silencing, Cell, 128, 763–776.

    Article  PubMed  CAS  Google Scholar 

  12. Carmell, M. A., Xuan, Z., Zhang, M. Q., and Hannon, G. J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis, Genes Dev., 16, 2733–2742.

    Article  PubMed  CAS  Google Scholar 

  13. Meister, G. (2013) Argonaute proteins: functional insights and emerging roles, Nat. Rev. Genet., 14, 447–459.

    Article  PubMed  CAS  Google Scholar 

  14. Schroda, M. (2006) RNA silencing in Chlamydomonas: mechanisms and tools, Curr. Genet., 49, 69–84.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., Wang, X. J., and Qi, Y. (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii, Genes Dev., 21, 1190–1203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Axtell, M. J., Snyder, J. A., and Bartel, D. P. (2007) Common functions for diverse small RNAs of land plants, Plant Cell, 19, 1750–1769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., and Vaucheret, H. (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance, Plant Cell, 14, 629–639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhao, K., Zhao, H., Chen, Z., Feng, L., Ren, J., Cai, R., and Xiang, Y. (2015) The Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in Populus tri-chocarpa: gene structure, gene expression, phylogenetic analysis and evolution, J. Genet., 94, 317–321.

    Google Scholar 

  19. Qian, Y., Cheng, Y., Cheng, X., Jiang, H., Zhu, S., and Cheng, B. (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA poly-merase gene families in maize, Plant Cell Rep., 30, 1347–1363.

    CAS  Google Scholar 

  20. Zhai, L., Sun, W., Zhang, K., Jia, H., Liu, L., Liu, Z., Teng, F., and Zhang, Z. (2014) Identification and charac-terization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize, J. Integr. Plant. Biol., 56, 1042–1052.

    Article  PubMed  CAS  Google Scholar 

  21. Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K., and Kapoor, S. (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA poly-merase gene families and their expression analysis during reproductive development and stress in rice, BMC Genomics, 9, 451.

    Google Scholar 

  22. Drinnenberg, I. A., Weinberg, D. E., Xie, K. T., Mower, J. P., Wolfe, K. H., Fink, G. R., and Bartel, D. P. (2009) RNAi in budding yeast, Science, 326, 544–550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tolia, N. H., and Joshua-Tor, L. (2007) Slicer and the arg-onautes, Nat. Chem. Biol., 3, 36–43.

    Article  PubMed  CAS  Google Scholar 

  24. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implica-tions for RISC slicer activity, Science, 305, 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  25. Rivas, F. V., Tolia, N. H., Song, J. J., Aragon, J. P., Liu, J., Hannon, G. J., and JoshuaTor, L. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC, Nat. Struct. Mol. Biol., 12, 340–349.

    Article  PubMed  CAS  Google Scholar 

  26. Frank, F., Sonenberg, N., and Nagar, B. (2010) Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2, Nature, 465, 818–822.

    Article  PubMed  CAS  Google Scholar 

  27. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regu-latory roles in Caenorhabditis elegans, Science, 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  28. Parker, J. S., Roe, S. M., and Barford, D. (2005) Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex, Nature, 434, 663–666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ghildiyal, M., Seitz, H., Horwich, M. D., Li, C., Du, T., Lee, S., Xu, J., Kittler, E. L., Zapp, M. L., Weng, Z., and Zamore, P. D. (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells, Science, 320, 1077–1081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Miyoshi, T., Ito, K., Murakami, R., and Uchiumi, T. (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute, Nat. Commun., 7, 11846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain, Nature, 426, 465–469.

    Article  PubMed  CAS  Google Scholar 

  32. Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M. M. (2003) Structure and conserved RNA binding of the PAZ domain, Nature, 426, 468–474.

    Article  PubMed  CAS  Google Scholar 

  33. Kwak, P. B., and Tomari, Y. (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly, Nat. Struct. Mol. Biol., 19, 145–151.

    Article  PubMed  CAS  Google Scholar 

  34. Hauptmann, J., Dueck, A., Harlander, S., Pfaff, J., Merkl, R., and Meister, G. (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes, Nat. Struct. Mol. Biol., 20, 814–817.

    Article  PubMed  CAS  Google Scholar 

  35. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  36. Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J., and Joo, C. (2015) A dynamic search process underlies microRNA targeting, Cell, 162, 96–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang, B., Li, S., Qi, H. H., Chowdhury, D., Shi, Y., and Novina, C. D. (2009) Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins, Nat. Struct. Mol. Biol., 16, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  38. Sheng, G., Zhao, H., Wang, J., Rao, Y., Tian, W., Swarts, D. C., van der Oost, J., Patel, D. J., and Wang, Y. (2014) Structure-based cleavage mechanism of Thermus ther-mophilus Argonaute DNA guide strand-mediated DNA tar-get cleavage, Proc. Natl. Acad. Sci. USA, 111, 652–657.

    Article  PubMed  CAS  Google Scholar 

  39. Tomari, Y., and Zamore, P. D. (2005) Perspective: machines for RNAi, Genes Dev., 19, 517–529.

    Article  PubMed  CAS  Google Scholar 

  40. Orban, T. I., and Izaurralde, E. (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome, RNA, 11, 459–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., and Hannon, G. J. (2004) Argonaute2 is the cat-alytic engine of mammalian RNAi, Science, 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  42. Okamura, K., Phillips, M. D., Tyler, D. M., Duan, H., Chou, Y. T., and Lai, E. C. (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution, Nat. Struct. Mol. Biol., 15, 354–363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P., and Blelloch, R. (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs, Genes Dev., 22, 2773–2785.

    PubMed  CAS  Google Scholar 

  44. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., and Carrington, J. C. (2004) Genetic and functional diversifi-cation of small RNA pathways in plants, PLoS Biol., 2, E104.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu, C., Kulkarni, K., Souret, F. F., MuthuValliappan, R., Tej, S. S., Poethig, R. S., Henderson, I. R., Jacobsen, S. E., Wang, W., Green, P. J., and Meyers, B. C. (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant, Genome Res., 16, 1276–1288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kasschau, K. D., Fahlgren, N., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., and Carrington, J. C. (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs, PLoS Biol., 5, e57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chapman, E. J., and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways, Nat. Rev. Genet., 8, 884–896.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III, Cell, 118, 57–68.

    Article  PubMed  CAS  Google Scholar 

  49. Macrae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., Adams, P. D., and Doudna, J. A. (2006) Structural basis for double-stranded RNA processing by Dicer, Science, 311, 195–198.

    Article  PubMed  CAS  Google Scholar 

  50. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex, Cell, 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  51. Ambros, V. (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing, Cell, 113, 673–676.

    Article  PubMed  CAS  Google Scholar 

  52. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  53. Cullen, B. R. (2004) Transcription and processing of human microRNA precursors, Mol. Cell, 16, 861–865.

    Article  PubMed  CAS  Google Scholar 

  54. Saini, H. K., Griffiths-Jones, S., and Enright, A. J. (2007) Genomic analysis of human microRNA transcripts, Proc. Natl. Acad. Sci. USA, 104, 17719–17724.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellu-lar localization, EMBO J., 21, 4663–4670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004) The Drosha–DGCR8 complex in pri-mary microRNA processing, Genes Dev., 18, 3016–3027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex, Nature, 432, 231–235.

    Article  PubMed  CAS  Google Scholar 

  58. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004) The Microprocessor complex mediates the genesis of microRNAs, Nature, 432, 235–240.

    Article  PubMed  CAS  Google Scholar 

  59. Lee, Y., Han, J., Yeom, K. H., Jin, H., and Kim, V. N. (2006) Drosha in primary microRNA processing, Cold Spring Harb. Symp. Quant. Biol., 71, 51–57.

    Article  PubMed  CAS  Google Scholar 

  60. Lund, E., and Dahlberg, J. E. (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs, Cold Spring Harb. Symp. Quant. Biol., 71, 59–66.

    Article  PubMed  CAS  Google Scholar 

  61. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science, 293, 834–838.

    Article  PubMed  CAS  Google Scholar 

  62. Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA inter-ference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell, 106, 23–34.

    Article  PubMed  CAS  Google Scholar 

  63. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  64. Kawamata, T., and Tomari, Y. (2010) Making RISC, Trends Biochem. Sci., 35, 368–376.

    Article  PubMed  CAS  Google Scholar 

  65. Meijer, H. A., Smith, E. M., and Bushell, M. (2014) Regulation of miRNA strand selection: follow the leader? Biochem. Soc. Trans., 42, 1135–1140.

    Article  PubMed  CAS  Google Scholar 

  66. MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V., and Doudna, J. A. (2008) In vitro reconstitution of the human RISC-loading complex, Proc. Natl. Acad. Sci. USA, 105, 512–517.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eamens, A. L., Smith, N. A., Curtin, S. J., Wang, M. B., and Waterhouse, P. M. (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes, RNA, 15, 2219–2235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias, Cell, 115, 209–216.

    Article  PubMed  CAS  Google Scholar 

  69. Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., Chapman, E. J., Fahlgren, N., Allen, E., and Carrington, J. C. (2008) Specificity of ARGONAUTE7–miR390 interaction and dual function-ality in TAS3 trans-acting siRNA formation, Cell, 133, 128–141.

    Article  PubMed  CAS  Google Scholar 

  70. Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008) The mechanism selecting the guide strand from small RNA duplexes is different among arg-onaute proteins, Plant Cell Physiol., 49, 493–500.

    Article  PubMed  CAS  Google Scholar 

  71. Tomari, Y., Du, T., and Zamore, P. D. (2007) Sorting of Drosophila small silencing RNAs, Cell, 130, 299–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Czech, B., Zhou, R., Erlich, Y., Brennecke, J., Binari, R., Villalta, C., Gordon, A., Perrimon, N., and Hannon, G. J. (2009) Hierarchical rules for Argonaute loading in Drosophila, Mol. Cell, 36, 445–456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S. H., Liou, L. W., Barefoot, A., Dickman, M., and Zhang, X. (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem develop-ment, Cell, 145, 242–256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development, Dev. Cell, 5, 337–350.

    Article  PubMed  CAS  Google Scholar 

  75. Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins, Nature, 442, 199–202.

    PubMed  Google Scholar 

  76. Brennecke, J., Malone, C. D., Aravin, A. A., Sachidanandam, R., Stark, A., and Hannon, G. J. (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing, Science, 322, 1387–1392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., and Gvozdev, V. A. (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline, Curr. Biol., 11, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  78. Aravin, A. A., Hannon, G. J., and Brennecke, J. (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race, Science, 318, 761–764.

    Article  PubMed  CAS  Google Scholar 

  79. Aravin, A. A., Sachidanandam, R., Bourc’his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T., and Hannon, G. J. (2008) A piRNA pathway primed by indi-vidual transposons is linked to de novo DNA methylation in mice, Mol. Cell, 31, 785–799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, 128, 1089–1103.

    Article  PubMed  CAS  Google Scholar 

  81. Muerdter, F., Olovnikov, I., Molaro, A., Rozhkov, N. V., Czech, B., Gordon, A., Hannon, G. J., and Aravin, A. A. (2012) Production of artificial piRNAs in flies and mice, RNA, 18, 42–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Andersen, P. R., Tirian, L., Vunjak, M., and Brennecke, J. (2017) A heterochromatin-dependent transcription machinery drives piRNA expression, Nature, 549, 54–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ipsaro, J. J., Haase, A. D., Knott, S. R., Joshua-Tor, L., and Hannon, G. J. (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis, Nature, 491, 279–283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nishimasu, H., Ishizu, H., Saito, K., Fukuhara, S., Kamatani, M. K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2012) Structure and function of Zucchini endoribonuclease in piRNA biogene-sis, Nature, 491, 284–287.

    Article  PubMed  CAS  Google Scholar 

  85. Kawaoka, S., Izumi, N., Katsuma, S., and Tomari, Y. (2011) 3′ end formation of PIWI-interacting RNAs in vitro, Mol. Cell, 43, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  86. Siomi, M. C., Sato, K., Pezic, D., and Aravin, A. A. (2011) PIWI-interacting small RNAs: the vanguard of genome defence, Nat. Rev. Mol. Cell Biol., 12, 246–258.

    Article  PubMed  CAS  Google Scholar 

  87. Law, J. A., and Jacobsen, S. E. (2010) Establishing, main-taining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 11, 204–220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rogers, K., and Chen, X. (2013) Biogenesis, turnover, and mode of action of plant microRNAs, Plant Cell, 25, 2383–2399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C. I., Rendtlew Danielsen, J. M., Yang, Y. G., and Qi, Y. (2012) A role for small RNAs in DNA double-strand break repair, Cell, 149, 101–112.

    Article  PubMed  CAS  Google Scholar 

  90. Ba, Z., and Qi, Y. (2013) Small RNAs: emerging key play-ers in DNA double-strand break repair, Sci. China Life Sci., 56, 933–936.

    Article  PubMed  CAS  Google Scholar 

  91. Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Young, R., Morozova, N., Fenouil, R., Descostes, N., Andrau, J. C., Mathieu, J., Hamiche, A., Ait-Si-Ali, S., Muchardt, C., Batsche, E., and Harel-Bellan, A. (2012) Argonaute proteins couple chromatin silencing to alternative splicing, Nat. Struct. Mol. Biol., 19, 998–1004.

    Article  PubMed  CAS  Google Scholar 

  92. Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., and Brown, P. O. (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA, PLoS Biol., 7, e1000238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, 466, 835–840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rissland, O. S., and Lai, E. C. (2011) RNA silencing in Monterey, Development, 138, 3093–3102.

    Article  PubMed  CAS  Google Scholar 

  95. Arribas-Layton, M., Wu, D., Lykke-Andersen, J., and Song, H. (2013) Structural and functional control of the eukaryotic mRNA decapping machinery, Biochim. Biophys. Acta, 1829, 580–589.

    Article  PubMed  CAS  Google Scholar 

  96. Hutvagner, G., and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex, Science, 297, 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  97. Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., and Poethig, R. S. (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis, Cell, 138, 750–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Eulalio, A., Huntzinger, E., Nishihara, T., Rehwinkel, J., Fauser, M., and Izaurralde, E. (2009) Deadenylation is a widespread effect of miRNA regulation, RNA, 15, 21–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wakiyama, M., Takimoto, K., Ohara, O., and Yokoyama, S. (2007) Let-7 microRNA-mediated mRNA deadenyla-tion and translational repression in a mammalian cell-free system, Genes Dev., 21, 1857–1862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., and Parker, R. (2006) Control of translation and mRNA degra-dation by miRNAs and siRNAs, Genes Dev., 20, 515–524.

    Article  PubMed  CAS  Google Scholar 

  101. Iwakawa, H. O., and Tomari, Y. (2015) The functions of microRNAs: mRNA decay and translational repression, Trends Cell Biol., 25, 651–665.

    Article  PubMed  CAS  Google Scholar 

  102. Wilczynska, A., and Bushell, M. (2015) The complexity of miRNA-mediated repression, Cell Death Differ., 22, 22–33.

    Article  PubMed  CAS  Google Scholar 

  103. Fukao, A., Mishima, Y., Takizawa, N., Oka, S., Imataka, H., Pelletier, J., Sonenberg, N., Thoma, C., and Fujiwara, T. (2014) MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans, Mol. Cell, 56, 79–89.

    Article  PubMed  CAS  Google Scholar 

  104. Bazzini, A. A., Lee, M. T., and Giraldez, A. J. (2012) Ribosome profiling shows that miR-430 reduces transla-tion before causing mRNA decay in zebrafish, Science, 336, 233–237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bethune, J., Artus-Revel, C. G., and Filipowicz, W. (2012) Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells, EMBO Rep., 13, 716–723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Djuranovic, S., Nahvi, A., and Green, R. (2012) miRNA-mediated gene silencing by translational repression fol-lowed by mRNA deadenylation and decay, Science, 336, 237–240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Braun, J. E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011) GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets, Mol. Cell, 44, 120–133.

    Article  PubMed  CAS  Google Scholar 

  108. Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., and Filipowicz, W. (2014) Structural and biochemical insights to the role of the CCR4–NOT com-plex and DDX6 ATPase in microRNA repression, Mol. Cell, 54, 751–765.

    Article  PubMed  CAS  Google Scholar 

  109. Braun, J. E., Huntzinger, E., and Izaurralde, E. (2013) The role of GW182 proteins in miRNA-mediated gene silencing, Adv. Exp. Med. Biol., 768, 147–163.

    Article  PubMed  CAS  Google Scholar 

  110. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S. I., and Moazed, D. (2004) RNAi-mediated tar-geting of heterochromatin by the RITS complex, Science, 303, 672–676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Jih, G., Iglesias, N., Currie, M. A., Bhanu, N. V., Paulo, J. A., Gygi, S. P., Garcia, B. A., and Moazed, D. (2017) Unique roles for histone H3K9me states in RNAi and her-itable silencing of transcription, Nature, 547, 463–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lan, F., Zaratiegui, M., Villen, J., Vaughn, M. W., Verdel, A., Huarte, M., Shi, Y., Gygi, S. P., Moazed, D., Martienssen, R. A., and Shi, Y. (2007) S. pombe LSD1 homologs regulate heterochromatin propagation and euchromatic gene transcription, Mol. Cell, 26, 89–101.

    Article  PubMed  CAS  Google Scholar 

  113. Sienski, G., Donertas, D., and Brennecke, J. (2012) Transcriptional silencing of transposons by Piwi and mael-strom and its impact on chromatin state and gene expres-sion, Cell, 151, 964–980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Le Thomas, A., Rogers, A. K., Webster, A., Marinov, G. K., Liao, S. E., Perkins, E. M., Hur, J. K., Aravin, A. A., and Toth, K. F. (2013) Piwi induces piRNA-guided tran-scriptional silencing and establishment of a repressive chromatin state, Genes Dev., 27, 390–399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Chen, Y. A., and Aravin, A. A. (2015) Non-coding RNAs in transcriptional regulation: the review for current molec-ular biology reports, Curr. Mol. Biol. Rep., 1, 10–18.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fang, X., and Qi, Y. (2016) RNAi in plants: an Argonaute-centered view, Plant Cell, 28, 272–285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. He, X. J., Hsu, Y. F., Zhu, S., Wierzbicki, A. T., Pontes, O., Pikaard, C. S., Liu, H. L., Wang, C. S., Jin, H., and Zhu, J. K. (2009) An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4-and RNA-binding protein, Cell, 137, 498–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Haag, J. R., Ream, T. S., Marasco, M., Nicora, C. D., Norbeck, A. D., Pasa-Tolic, L., and Pikaard, C. S. (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing, Mol. Cell, 48, 811–818.

    CAS  Google Scholar 

  119. Pontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez-Vasquez, J., Hakimi, M. A., Lerbs-Mache, S., Colot, V., and Lagrange, T. (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis, Genes Dev., 19, 2030–2040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Mosher, R. A., Schwach, F., Studholme, D., and Baulcombe, D. C. (2008) PolIVb influences RNA-direct-ed DNA methylation independently of its role in siRNA biogenesis, Proc. Natl. Acad. Sci. USA, 105, 3145–3150.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wierzbicki, A. T., Haag, J. R., and Pikaard, C. S. (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlap-ping and adjacent genes, Cell, 135, 635–648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wierzbicki, A. T., Ream, T. S., Haag, J. R., and Pikaard, C. S. (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin, Nat. Genet., 41, 630–634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Cao, X., and Jacobsen, S. E. (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing, Curr. Biol., 12, 1138–1144.

    Article  PubMed  CAS  Google Scholar 

  124. Barrangou, R., and Horvath, P. (2017) A decade of discov-ery: CRISPR functions and applications, Nat. Microbiol., 2, 17092.

    Article  PubMed  CAS  Google Scholar 

  125. Koonin, E. V., Makarova, K. S., and Zhang, F. (2017) Diversity, classification and evolution of CRISPR–Cas systems, Curr. Opin. Microbiol., 37, 67–78.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Koonin, E. V. (2017) Evolution of RNA-and DNA-guid-ed antivirus defense systems in prokaryotes and eukary-otes: common ancestry vs convergence, Biol. Direct, 12, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K., and Aravin, A. A. (2013) Bacterial argonaute sam-ples the transcriptome to identify foreign DNA, Mol. Cell, 51, 594–605.

    Article  PubMed  CAS  Google Scholar 

  128. Swarts, D. C., Jore, M. M., Westra, E. R., Zhu, Y., Janssen, J. H., Snijders, A. P., Wang, Y., Patel, D. J., Berenguer, J., Brouns, S. J. J., and van der Oost, J. (2014) DNA-guided DNA interference by a prokaryotic Argonaute, Nature, 507, 258–261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Shabalina, S. A., and Koonin, E. V. (2008) Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol., 23, 578–587.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Koonin, E. V., Makarova, K. S., and Wolf, Y. I. (2017) Evolutionary genomics of defense systems in Archaea and bacteria, Annu. Rev. Microbiol., 71, 233–261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Burroughs, A. M., Iyer, L. M., and Aravind, L. (2013) Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of tran-scription in eukaryotes, Biol. Direct, 8, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Ma, J. B., Yuan, Y. R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein, Nature, 434, 666–670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yuan, Y. R., Pei, Y., Ma, J. B., Kuryavyi, V., Zhadina, M., Meister, G., Chen, H. Y., Dauter, Z., Tuschl, T., and Patel, D. J. (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage, Mol. Cell, 19, 405–419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Swarts, D. C., Hegge, J. W., Hinojo, I., Shiimori, M., Ellis, M. A., Dumrongkulraksa, J., Terns, R. M., Terns, M. P., and van der Oost, J. (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA, Nucleic Acids Res., 43, 5120–5129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Matsumoto, N., Nishimasu, H., Sakakibara, K., Nishida, K. M., Hirano, T., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2016) Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA, Cell, 167, 484–497 e489.

    Article  PubMed  CAS  Google Scholar 

  136. Swarts, D. C., Szczepaniak, M., Sheng, G., Chandradoss, S. D., Zhu, Y., Timmers, E. M., Zhang, Y., Zhao, H., Lou, J., Wang, Y., Joo, C., and van der Oost, J. (2017) Autonomous generation and loading of DNA guides by bacterial Argonaute, Mol. Cell, 65, 985–998 e986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zander, A., Holzmeister, P., Klose, D., Tinnefeld, P., and Grohmann, D. (2014) Single-molecule FRET supports the two-state model of Argonaute action, RNA Biology, 11, 45–56.

    Article  PubMed  CAS  Google Scholar 

  138. Zander, A., Willkomm, S., Ofer, S., van Wolferen, M., Egert, L., Buchmeier, S., Stockl, S., Tinnefeld, P., Schneider, S., Klingl, A., Albers, S. V., Werner, F., and Grohmann, D. (2017) Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jan-naschii, Nat. Microbiol., 2, 17034.

    Article  PubMed  CAS  Google Scholar 

  139. Kaya, E., Doxzen, K. W., Knoll, K. R., Wilson, R. C., Strutt, S. C., Kranzusch, P. J., and Doudna, J. A. (2016) A bacterial Argonaute with noncanonical guide RNA speci-ficity, Proc. Natl. Acad. Sci. USA, 113, 4057–4062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Doxzen, K. W., and Doudna, J. A. (2017) DNA recogni-tion by an RNA-guided bacterial Argonaute, PloS One, 12, e0177097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hegge, J. W., Swarts, D. C., and van der Oost, J. (2017) Prokaryotic Argonaute proteins: novel genome-editing tools? Nat. Rev. Microbiol., 16, 5–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Olina or D. M. Esyunina.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 5, pp. 645–661.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olina, A.V., Kulbachinskiy, A.V., Aravin, A.A. et al. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. Biochemistry Moscow 83, 483–497 (2018). https://doi.org/10.1134/S0006297918050024

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918050024

Keywords

Navigation