Skip to main content
Log in

2,5-Diketopiperazines: A New Class of Poly(ADP-ribose)polymerase Inhibitors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We show for the first time that natural 2,5-diketopiperazines (cyclic dipeptides) can suppress the activity of the important anticancer target poly(ADP-ribose)polymerase (PARP). Cyclo(L-Ala-L-Ala) and cyclo(L-Ala-D-Ala) can interact with the key residues of the PARP-1 active site, as demonstrated using docking and molecular dynamics simulations. One of the amide groups of cyclo(L-Ala-L-Ala) and cyclo(L-Ala-D-Ala) forms hydrogen bonds with the Gly863 residue, while the second amide group can form a hydrogen bond with the catalytic residue Glu988, and the side chain can make a hydrophobic contact with Ala898. Newly identified diketopiperazine inhibitors are promising basic structures for the design of more effective inhibitors of PARP family enzymes. The piperazine core with two chiral centers provides many opportunities for structural optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PARP:

poly(ADP-ribose)polymerase.

References

  1. Prasad, C. (1995) Bioactive cyclic dipeptides, Peptides, 16, 151–164.

    Article  CAS  PubMed  Google Scholar 

  2. Minelli, A., Bellezza, I., Grottelli, S., and Galli, F. (2008) Focus on cyclo(His-Pro): history and perspectives as antioxidant peptide, Amino Acids, 35, 283–289.

    Article  CAS  PubMed  Google Scholar 

  3. Borthwick, A. D., and Da Costa, N. C. (2017) 2,5-Diketopiperazines in food and beverages: taste and bioactivity, Crit. Rev. Food Sci. Nutr., 57, 718–742.

    Article  CAS  PubMed  Google Scholar 

  4. Martins, M. B., and Carvalho, I. (2007) Diketopiperazines: biological activity and synthesis, Tetrahedron, 63, 9923–9932.

    Article  CAS  Google Scholar 

  5. Borthwick, A. D. (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products, Chem. Rev., 112, 3641–3716.

    Article  CAS  PubMed  Google Scholar 

  6. Dinsmore, C. J., and Beshore, D. C. (2002) Recent advances in the synthesis of diketopiperazines, Tetrahedron, 58, 3297–3312.

    Article  CAS  Google Scholar 

  7. Rodionov, I. L., Rodionova, L. N., Baidakova, L. K., Romashko, A. M., Balashova, T. A., and Ivanov, V. T. (2002) Cyclic dipeptides as building blocks for combinatorial libraries. Part 2: Synthesis of bifunctional diketopiperazines, Tetrahedron, 58, 8515–8523.

    Article  CAS  Google Scholar 

  8. Khimiuk, A. Y., Korennykh, A. V., Van Langen, L. M., Van Rantwijk, F., Sheldon, R. A., and Švedas, V. K. (2003) Penicillin acylase-catalyzed peptide synthesis in aqueous medium: a chemo-enzymatic route to stereoisomerically pure diketopiperazines, Tetrahedron Asymmetry, 14, 3123–3128.

    Article  CAS  Google Scholar 

  9. Coward, R. M., and Carson, C. C. (2008) Tadalafil in the treatment of erectile dysfunction, Ther. Clin. Risk Manag., 4, 1315–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borthwick, A. D. (2010) Oral oxytocin antagonists, J. Med. Chem., 53, 6525–6538.

    Article  CAS  PubMed  Google Scholar 

  11. Watson, C., Jenkinson, S., Kazmierski, W., and Kenakin, T. (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor, Mol. Pharmacol., 67, 1268–1282.

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson, B., Lloyd, G. K., Miller, B. R., Palladino, M. A., Kiso, Y., Hayashi, Y., and Neuteboom, S. T. (2006) NPI-2358 is a tubulin-depolymerizing agent: in vitro evidence for activity as a tumor vascular-disrupting agent, Anticancer Drugs, 17, 25–31.

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi, Y., Yamazaki-Nakamura, Y., and Yakushiji, F. (2013) Medicinal chemistry and chemical biology of diketopiperazine-type antimicrotubule and vascular-disrupting agents, Chem. Pharm. Bull. (Tokyo), 61, 889–901.

    Article  CAS  Google Scholar 

  14. Hassa, P. O., Haenni, S. S., Elser, M., and Hottiger, M. O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going, Microbiol. Mol. Biol. Rev., 70, 789–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hassler, M., and Ladurner, A. G. (2012) Towards a structural understanding of PARP1 activation and related signaling ADP-ribosyl-transferases, Curr. Opin. Struct. Biol., 22, 721–729.

    Article  CAS  PubMed  Google Scholar 

  16. Drenichev, M. S., and Mikhailov, S. N. (2016) Poly(ADP-ribose): from chemical synthesis to drug design, Bioorg. Med. Chem. Lett., 26, 3395–3403.

    Article  CAS  PubMed  Google Scholar 

  17. Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C., Soto, M., and Perez, J. M. (2006) Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy, Recent Pat. Anticancer Drug Discov., 1, 39–53.

    Article  CAS  PubMed  Google Scholar 

  18. Curtin, N. J., and Szabo, C. (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond, Mol. Aspects Med., 34, 1217–1256.

    Article  CAS  PubMed  Google Scholar 

  19. Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., Santarosa, M., Dillon, K. J., Hickson, I., Knights, C., Martin, N. M., Jackson, S. P., Smith, G. C., and Ashworth, A. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature, 434, 917–921.

    Article  CAS  PubMed  Google Scholar 

  20. Martin, S. A., Lord, C. J., and Ashworth, A. (2008) DNA repair deficiency as a therapeutic target in cancer, Curr. Opin. Genet. Dev., 18, 80–86.

    Article  CAS  PubMed  Google Scholar 

  21. Ame, J. C., Spenlehauer, C., and De Murcia, G. (2004) The PARP superfamily, Bioessays, 26, 882–893.

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber, V., Dantzer, F., Ame, J. C., and De Murcia, G. (2006) Poly(ADP-ribose): novel functions for an old molecule, Nat. Rev. Mol. Cell Biol., 7, 517–528.

    Article  CAS  PubMed  Google Scholar 

  23. Jagtap, P., and Szabo, C. (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors, Nat. Rev. Drug Discov., 4, 421–440.

    Article  CAS  PubMed  Google Scholar 

  24. Ferraris, D. V. (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic, J. Med. Chem., 53, 4561–4584.

    Article  CAS  PubMed  Google Scholar 

  25. Malyuchenko, N. V., Kotova, E. Y., Kulaeva, O. I., Kirpichnikov, M. P., and Studitskiy, V. M. (2015) PARP1 inhibitors: antitumor drug design, Acta Naturae, 7, 27–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Banasik, M., and Ueda, K. (1994) Inhibitors and activators of ADP-ribosylation reactions, Mol. Cell. Biochem., 138, 185–197.

    Article  CAS  PubMed  Google Scholar 

  27. Frampton, J. E. (2015) Olaparib: a review of its use as maintenance therapy in patients with ovarian cancer, BioDrugs, 29, 143–150.

    Article  CAS  PubMed  Google Scholar 

  28. Sehouli, J., Braicu, E. I., and Chekerov, R. (2016) PARP inhibitors for recurrent ovarian carcinoma: current treatment options and future perspectives, Geburtshilfe Frauenheilkd., 76, 164–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. Q., Wang, P. Y., Wang, Y. T., Yang, G. F., Zhang, A., and Miao, Z. H. (2016) An update on poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors: opportunities and challenges in cancer therapy, J. Med. Chem., 59, 9575–9598.

    Article  CAS  PubMed  Google Scholar 

  30. Nilov, D. K., Tararov, V. I., Kulikov, A. V., Zakharenko, A. L., Gushchina, I. V., Mikhailov, S. N., Lavrik, O. I., and Švedas, V. K. (2016) Inhibition of poly(ADP-ribose)polymerase by nucleic acid metabolite 7-methylguanine, Acta Naturae, 8, 108–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sletten, E. (1970) Conformation of cyclic dipeptides. The crystal and molecular structures of cyclo-D-alanyl-L-alanyl and cyclo-L-alanyl-L-alanyl (3,6-dimethylpiperazine-2,5-dione), J. Am. Chem. Soc., 92, 172–177.

    Article  CAS  Google Scholar 

  32. Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., and Chilov, G. G. (2008) Lead finder: an approach to improve accuracy of protein–ligand docking, binding energy estimation, and virtual screening, J. Chem. Inf. Model., 48, 2371–2385.

    Article  CAS  PubMed  Google Scholar 

  33. Novikov, F. N., Stroylov, V. S., Stroganov, O. V., Kulkov, V., and Chilov, G. G. (2009) Developing novel approaches to improve binding energy estimation and virtual screening: a PARP case study, J. Mol. Model., 15, 1337–1347.

    Article  CAS  PubMed  Google Scholar 

  34. Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Gotz, A. W., Kolossvary, I., Wong, K. F., Paesani, F., Vanicek, J., Wolf, R. M., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Salomon-Ferrer, R., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., and Kollman, P. A. (2012) AMBER 12, University of California, San Francisco.

    Google Scholar 

  35. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) The Amber biomolecular simulation programs, J. Comput. Chem., 26, 1668–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voevodin, V. V., Zhumatiy, S. A., Sobolev, S. I., Antonov, A. S., Bryzgalov, P. A., Nikitenko, D. A., Stefanov, K. S., and Voevodin, V. V. (2012) Practice of “Lomonosov” super-computer, Open Systems J. (Moscow), 7, 36–39.

    Google Scholar 

  37. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved, Proteins, 65, 712–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crowley, M. F., Darden, T. A., Cheatham, T. E., and Deerfield, D. W. (1997) Adventures in improving the scaling and accuracy of a parallel molecular dynamics program, J. Supercomput., 11, 255–278.

    Article  Google Scholar 

  39. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD–visual molecular dynamics, J. Mol. Graph., 14, 33–38.

    Article  CAS  PubMed  Google Scholar 

  40. Kinoshita, T., Nakanishi, I., Warizaya, M., Iwashita, A., Kido, Y., Hattori, K., and Fujii, T. (2004) Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase, FEBS Lett., 556, 43–46.

    Article  CAS  PubMed  Google Scholar 

  41. Wahlberg, E., Karlberg, T., Kouznetsova, E., Markova, N., Macchiarulo, A., Thorsell, A. G., Pol, E., Frostell, A., Ekblad, T., Oncu, D., Kull, B., Robertson, G. M., Pellicciari, R., Schuler, H., and Weigelt, J. (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors, Nat. Biotechnol., 30, 283–288.

    Article  CAS  PubMed  Google Scholar 

  42. Ekblad, T., Lindgren, A. E., Andersson, C. D., Caraballo, R., Thorsell, A. G., Karlberg, T., Spjut, S., Linusson, A., Schuler, H., and Elofsson, M. (2015) Towards small molecule inhibitors of mono-ADP-ribosyltransferases, Eur. J. Med. Chem., 95, 546–551.

    Article  CAS  PubMed  Google Scholar 

  43. Stark, T., and Hofmann, T. (2005) Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao), J. Agric. Food Chem., 53, 7222–7231.

    Article  CAS  PubMed  Google Scholar 

  44. Stark, T., Bareuther, S., and Hofmann, T. (2006) Molecular definition of the taste of roasted cocoa nibs (Theobroma cacao) by means of quantitative studies and sensory experiments, J. Agric. Food Chem., 54, 5530–5539.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y. H., Liou, S. E., and Chen, C. C. (2004) Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence, Eur. Food Res. Technol., 218, 589–597.

    Article  CAS  Google Scholar 

  46. Li, X. J., Tang, H. Y., Duan, J. L., Gao, J. M., and Xue, Q. H. (2013) Bioactive alkaloids produced by Pseudomonas brassicacearum subsp. neoaurantiaca, an endophytic bacterium from Salvia miltiorrhiza, Nat. Prod. Res., 27, 496–499.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Švedas.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 2, pp. 251-258.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilov, D.K., Yashina, K.I., Gushchina, I.V. et al. 2,5-Diketopiperazines: A New Class of Poly(ADP-ribose)polymerase Inhibitors. Biochemistry Moscow 83, 152–158 (2018). https://doi.org/10.1134/S0006297918020074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918020074

Keywords

Navigation