Skip to main content
Log in

Coefficient of variation of lifespan across the tree of life: Is it a signature of programmed aging?

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Measurements of variation are of great importance for studying the stability of pathological phenomena and processes. For the biology of aging, it is very important not only to determine average mortality, but also to study its stability in time and the size of fluctuations that are indicated by the variation coefficient of lifespan (CVLS). It is believed that a relatively small (∼20%) value of CVLS in humans, comparable to the coefficients of variation of other events programmed in ontogenesis (for example, menarche and menopause), indicates a relatively rigid determinism (N. S. Gavrilova et al. (2012) Biochemistry (Moscow), 77, 754-760). To assess the prevalence of this phenomenon, we studied the magnitude of CVLS, as well as the coefficients of skewness and kurtosis in diverse representatives of the animal kingdom using data provided by the Institute for Demographic Research (O. R. Jones et al. (2014) Nature, 505, 169-173). We found that, unlike humans and laboratory animals, in most examined species the values of CVLS are rather high, indicating heterogeneity of the lifespan in the cohorts studied. This is probably due to the large influence of background mortality, as well as the non-monotonicity of total mortality in the wild, especially at the earliest ages. One way to account for this influence is to “truncate” the data (removing the earliest and latest ages from consideration). To reveal the effect of this procedure, we proposed a new indicator, the stability coefficient of mortality dynamics, which indicates how quickly CVLS is reduced to values that characterize a relatively homogeneous population (33%) when the data are “truncated”. Such indicators facilitate the use of the parameters of survival curves for analysis of the effects of geroprotectors, lifestyle, and other factors on lifespan, and for the quantification of relative contributions of genetic and environmental factors to the dynamics of aging in human and animal populations, including those living in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CV:

coefficient of variation

LS:

lifespan

References

  1. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754–760.

    Article  CAS  Google Scholar 

  2. Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) Biodemographic trajectories of longevity, Science, 280, 855–860.

    Article  CAS  PubMed  Google Scholar 

  4. Baudisch, A. (2008) Inevitable Aging? Contributions to Evolutionary-Demographic Theory, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  5. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

    Article  CAS  Google Scholar 

  6. Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.

    Article  CAS  Google Scholar 

  7. Hyams, Y., Paz, G., Rabinowitz, C., and Rinkevich, B. (2017) Insights into the unique torpor of Botrylloides leachii, a colonial urochordate, Dev. Biol., 428, 101–117.

    CAS  PubMed  Google Scholar 

  8. Fisher, R. A. (1930) The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Book  Google Scholar 

  9. Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.

    Google Scholar 

  10. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  11. Nusbaum, N. J. (1996) What good is it to get old? Med. Hypotheses, 47, 77–79.

    Article  CAS  PubMed  Google Scholar 

  12. Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales, Curr. Biol., 25, 746–750.

    CAS  PubMed  Google Scholar 

  13. Kirkwood, T. B. L. (2010) Systems biology of ageing and longevity, Phil. Trans. R. Soc. B., 366, 64–70.

    Article  Google Scholar 

  14. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.

    Google Scholar 

  15. Vijg, J., and Suh, Y. (2005) Genetics of longevity and aging, Annu. Rev. Med., 56, 193–212.

    Article  CAS  PubMed  Google Scholar 

  16. Campisi, J. (2005) Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev., 126, 51–58.

    CAS  PubMed  Google Scholar 

  17. Liu, J. J., Prescott, J., Giovannucci, E., Hankinson, S. E., Rosner, B., Han, J., and De Vivo, I. (2013) Plasma vitamin D biomarkers and leukocyte telomere length, Am. J. Epidemiol., 177, 1411–1417.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann-Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J., and Kirkland, J. L. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14, 644–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  20. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism? Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  21. Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Oxford, Clarendon Press.

    Book  Google Scholar 

  22. Guarente, L., and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms, Nature, 408, 255–262.

    Article  CAS  PubMed  Google Scholar 

  23. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nature Rev. Genet., 6, 866–872.

    Article  CAS  PubMed  Google Scholar 

  24. Fushan, A. A., Turanov, A. A., Lee, S. G., Kim, E. B., Lobanov, A. V., Yim, S. H., Buffenstein, R., Lee, S. R., Chang, K. T., Rhee, H., Kim, J. S., Yang, K. S., and Gladyshev, V. N. (2015) Gene expression defines natural changes in mammalian lifespan, Aging Cell, 14, 352–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, S., and Gladyshev, V. N. (2017) Molecular signatures of longevity: insights from cross-species comparative studies, Semin. Cell. Dev. Biol., pii: S1084–9521.

    Google Scholar 

  26. Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2015) Aging epigenetics: accumulation of errors or realization of a specific program? Biochemistry (Moscow), 80, 1406–1417.

    Article  CAS  Google Scholar 

  27. Stegeman, R., and Weake, V. M. (2017) Transcriptional signatures of aging, J. Mol. Biol., 429, 2427–2437.

    Article  CAS  PubMed  Google Scholar 

  28. Austad, S. N. (1993) Retarded senescence in an insular population of opossums, J. Zool. (Lond.), 229, 695–708.

    Article  Google Scholar 

  29. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.

    Article  PubMed  Google Scholar 

  30. Hughes, B. G., and Hekimi, S. (2017) Many possible maximum lifespan trajectories, Nature, 546, 8–9.

    Article  Google Scholar 

  31. Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philos. Trans. R. Soc. L. A., 115, 513–585.

    Article  Google Scholar 

  32. Deevey, E. S. (1947) Life tables for natural populations of animals, Q. Rev. Biol., 22, 283–314.

    Article  PubMed  Google Scholar 

  33. Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.

    Google Scholar 

  34. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, N. Y.

    Google Scholar 

  35. Khalyavkin, A. V. (2001) Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.

    Google Scholar 

  36. Ricklefs, R. E. (2010) Life-history connections to rates of aging in terrestrial vertebrates, Proc. Natl. Acad. Sci. USA, 107, 10314–10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warner, D. A., Miller, D. A., Bronikowski, A. M., and Janzen, F. J. (2016) Decades of field data reveal that turtles senesce in the wild, Proc. Natl. Acad. Sci. USA, 113, 6502–6507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitnitski, A., Howlett, S. E., and Rockwood, K. (2017) Heterogeneity of human aging and its assessment, J. Gerontol. A Biol. Sci. Med. Sci., 72, 877–884.

    PubMed  Google Scholar 

  40. Baudisch, A., and Vaupel, J. (2010) Senescence vs. sustenance: evolutionary-demographic models of aging, Demogr. Res., 23, 655–668.

    Article  Google Scholar 

  41. Mitnitski, A., Song, X., and Rockwood, K. (2013) Assessing biological aging: the origin of deficit accumulation, Biogerontology, 14, 709–717.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.

    Article  CAS  Google Scholar 

  43. Akif’ev, A. P., and Potapenko, A. I. (2001) Nuclear genetic material as an initial substrate of aging in animals, Russ. J. Genet., 37, 1213–1223.

    Article  Google Scholar 

  44. Blagosklonny, M. V. (2007) Program-like aging and mitochondria: instead of random damage by free radicals, J. Cell. Biochem., 102, 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  45. Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.

    PubMed  Google Scholar 

  46. Libertini, G. (2012) Phenoptosis, another specialized neologism, or the mark of a widespread revolution? Biochemistry (Moscow), 77, 795–798.

    CAS  Google Scholar 

  47. Khokhlov, A. N. (2010) Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.

    Article  CAS  Google Scholar 

  48. Shilovsky, G. A., Khokhlov, A. N., and Shram, S. I. (2013) The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination, Biochemistry (Moscow), 78, 433–444.

    Article  CAS  Google Scholar 

  49. Khalyavkin, A. V. (2013) Phenoptosis as genetically determined aging influenced by signals from the environment, Biochemistry (Moscow), 78, 1001–1005.

    Article  CAS  Google Scholar 

  50. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.

    PubMed  Google Scholar 

  51. Timofeeff-Ressovsky, N. W. (1927) Studies on the phenotype manifestation of hereditary factors. I. On the phenotypic manifestation of the genovariation radius incompletus in Drosophila funebris, Genetics, 12, 128–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh-London.

    Google Scholar 

  53. Carey, J. R., and Judge, D. S. (2001) Odense Monographs on Population Aging, Ser. 8, Odense University Press, Odense, Denmark.

    Google Scholar 

  54. Bowles, J. T. (1998) The evolution of aging: a new approach to an old problem of biology, Med. Hypotheses, 51, 179–221.

    Article  CAS  PubMed  Google Scholar 

  55. Terres, J. (1980) The Audubon Society Encyclopedia of North American Birds, Knopf, New York.

    Google Scholar 

  56. Murphy, R., Berry, K., Edwards, T., Leviton, A., Lathrop, A., and Riedle, J. (2011) The dazed and confused identity of Agassiz’s land tortoise, Gopherus agassizii (Testudines: Testudinidae) with the description of a new species and its consequences for conservation, ZooKeys, 113, 39–71.

    Google Scholar 

  57. Miller, J. K. (2001) Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis), Exp. Gerontol., 36, 829–832.

    Article  CAS  PubMed  Google Scholar 

  58. Congdon, J. D., Nagle, R. D., Kinney, O. M., van Loben Sels, R. C., Quinter, T., and Tinkle, D. W. (2003) Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta), Exp. Gerontol., 38, 765–772.

    Article  PubMed  Google Scholar 

  59. Shilovsky, G. A., Putyatina, T. S., Lysenkov, S. N., Ashapkin, V. V., Luchkina, O. S., Markov, A. V., and Skulachev, V. P. (2016) Is it possible to prove the existence of an aging program by quantitative analysis of mortality dynamics? Biochemistry (Moscow), 81, 1461–1476.

    Article  CAS  Google Scholar 

  60. Finch, C. E., and Tanzi, R. E. (1997) Genetics of aging, Science, 278, 407–411.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen, A. A. (2017) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging, Biochim. Biophys. Acta, pii: S0925–4439.

    Google Scholar 

  62. Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A Biol. Sci. Med. Sci., 60, 1369–1377.

    Article  PubMed  Google Scholar 

  63. Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.

    PubMed  Google Scholar 

  64. Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978) The main directions of the aging and death of animals from the point of view of reliability theory, J. Gen. Biol., 39, 734–742.

    CAS  Google Scholar 

  65. Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler–Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180–189.

    Article  PubMed  Google Scholar 

  66. Jones, O. R., Gaillard, J. M., Tuljapurkar, S., Alho, J. S., Armitage, K. B., Becker, P. H., Bize, P., Brommer, J., Charmantier, A., Charpentier, M., Clutton-Brock, T., Dobson, F. S., Festa-Bianchet, M., Gustafsson, L., Jensen, H., Jones, C. G., Lillandt, B. G., McCleery, R., Merilä, J., Neuhaus, P., Nicoll, M. A., Norris, K., Oli, M. K., Pemberton, J., Pietiäinen, H., Ringsby, T. H., Roulin, A., Saether, B. E., Setchell, J. M., Sheldon, B. C., Thompson, P. M., Weimerskirch, H., Jean Wickings, E., and Coulson, T. (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum, Ecol. Lett., 11, 664–673.

    Article  PubMed  Google Scholar 

  67. Baudisch, A. (2011) The pace and shape of ageing, Methods Ecol. Evol., 2, 375–382.

    Article  Google Scholar 

  68. Markov, A. V., Naimark, E. B., and Yakovleva, E. U. (2016) Temporal scaling of age-dependent mortality: dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable, Biochemistry (Moscow), 81, 906–911.

    CAS  Google Scholar 

  69. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214–225.

    Article  PubMed  Google Scholar 

  70. Lamb, M. J. (1977) Biology of Aging, John Wiley and Sons, New York.

    Google Scholar 

  71. Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105–107.

    Article  PubMed  Google Scholar 

  72. Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, St. Petersburg.

    Google Scholar 

  73. Myl’nikov, S. V. (2011) Towards the estimation of survival curves parameters and geroprotectors classification, Adv. Gerontol., 24, 563–569.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shilovsky.

Additional information

Original Russian Text © G. A. Shilovsky, T. S. Putyatina, V. V. Ashapkin, O. S. Luchkina, A. V. Markov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 12, pp. 1842-1857.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A., Putyatina, T.S., Ashapkin, V.V. et al. Coefficient of variation of lifespan across the tree of life: Is it a signature of programmed aging?. Biochemistry Moscow 82, 1480–1492 (2017). https://doi.org/10.1134/S0006297917120070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917120070

Keywords

Navigation