Skip to main content
Log in

“Suppressor factor” of neutrophils: A short story of a long-term misconception

  • Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A large body of evidence obtained during the last decade has demonstrated that neutrophils suppress T cell proliferation in different models of inflammation and cell interaction. The commonly used method for assessing cell proliferation and proliferation inhibition is measuring [3H]thymidine incorporation into cells. Earlier, we observed inhibition of [3H]thymidine uptake in experiments on neutrophil-mediated regulation of T cell response in tuberculosis immunity. Here, we used different types of proliferating cells to analyze the nature of the soluble “neutrophil factor” by a variety of methods (dialysis, HPLC, mass spectrometry, and NMR) and unambiguously demonstrated that neutrophils do not synthesize a specific factor inhibiting cell proliferation, but secrete high concentrations of extracellular thymidine that competitively inhibit [3H]thymidine incorporation. Although the physiological significance of thymidine secretion by neutrophils remains unknown, this phenomenon should be carefully considered when designing test systems for studying cell–cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APCs:

antigen-presenting cells

CFSE:

carboxyfluorescein succinimidyl ester

13C-1H-HSQC:

heteronuclear single quantum correlation spectroscopy

DQF-COSY:

double-quantum filtered correlation spectroscopy

MHC:

major histocompatibility complex

PBS:

phosphate buffered saline

References

  1. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., and Halbwachs-Mecarelli, L. (2000) Neutrophils: molecules, functions and pathophysiological aspects, Lab. Invest., 80, 617–653.

    Article  CAS  PubMed  Google Scholar 

  2. Nathan, C. (2006) Neutrophils and immunity: challenges and opportunities, Nat. Rev. Immunol., 6, 173–182.

    Article  CAS  PubMed  Google Scholar 

  3. Kuijpers, T. W., Van den Berg, T. K., and Roos, D. (2009) Phagocyte–Pathogen Interactions (Russel, D. G., and Gordon S., eds.) ASM Press, Washington DC,pp. 3–26.

  4. Quint, J. K., and Wedzicha, J. A. (2007) The neutrophil in chronic obstructive pulmonary disease, J. Allergy Clin. Immunol., 119, 1065–1071.

  5. Eruslanov, E. B., Lyadova, I. V., Kondratieva, T. K., Majorov, K. B., Scheglov, I. V., Orlova, M. O., and Apt, A. S. (2005) Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice, Infect. Immun., 73, 1744–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eum, S. Y., Kong, J. H., Hong, M. S., Lee, Y. J., Kim, J. H., Hwang, S. H., Cho, S. N., Via, L. E., and Barry, C. E., 3rd. (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB, Chest, 137, 122–128.

    Article  PubMed  Google Scholar 

  7. Tanaka, D. (2006) Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis, Immunology, 119, 195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chin, A. C., and Parkos, C. A. (2006) Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking, Ann. N. Y. Acad. Sci., 1072, 276–287.

    Article  CAS  PubMed  Google Scholar 

  9. Soehnlein, O., Weber, C., and Lindbom, L. (2009) Neutrophil granule proteins tune monocytic cell function, Trends Immunol., 30, 538–546.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, C. W., Strong, B. S. I., Miller, M. J., and Unanue, E. R. (2010) Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants, J. Immunol., 185, 2927–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaeger, B. N., Donadieu, J., Cognet, C., Bernat, C., Ordonez-Rueda, D., Barlogis, V., Mahlaoui, N., Fenis, A., Narni-Mancinelli, E., Beaupain, B., Bellanne-Chantelot, C., Bajenoff, M., Malissen, B., Malissen, M., Vivier, E., and Ugolini, S. (2012) Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis, J. Exp. Med., 209, 565–580.

    Article  CAS  PubMed  Google Scholar 

  12. Kondratieva, T. K., Rubakova, E. I., Linge, I. A., Evstifeev, V. V., Majorov, K. B., and Apt, A. S. (2010) B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette–Guerin vaccination against tuberculosis infection in mice, J. Immunol., 184, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  13. Kozakiewicz, L., Chen, Y., Xu, J., Wang, Y., DunussiJannopopulos, K., Ou, Q., Flynn, J. L., Porcelli, S. A., Jacobs, W. R., and Chan, J. (2013) B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response, PLoS Pathog., 9, e1003472.

    Article  CAS  Google Scholar 

  14. Yang, D., De la Rosa, G., Tewary, P., and Oppenheim, J. J. (2009) Alarmins link neutrophils and dendritic cells, Trends Immunol., 30, 531–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barquero-Calvo, E., Martirosyan, A., Ordonez-Rueda, D., Arce-Gorvel, V., Alfaro-Alarcon, A., Lepidi, H., Malissen, B., Malissen, M., Gorvel, J. P., and Moreno, E. (2013) Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus, PLoS Pathog., 9, e1003167.

    Article  CAS  Google Scholar 

  16. Muller, I., Munder, M., Kropf, P., and Hansch, G. M. (2009) Polymorphonuclear neutrophils and T-lymphocytes: strange bedfellows or brothers in arms? Trends Immunol., 30, 522–530.

    Article  CAS  PubMed  Google Scholar 

  17. D’Avila, H., Roque, N. R., Cardoso, R. M., Castro-FariaNeto, H. C., Melo, R. C., and Bozza, P. T. (2008) Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages, Cell. Microbiol., 10, 2589–2604.

    Article  CAS  PubMed  Google Scholar 

  18. Yeremeev, V., Linge, I., Kondratieva, T., and Apt, A. (2015) Neutrophils exacerbate tuberculosis infection in genetically susceptible mice, Tuberculosis (Edinb.), 95, 447–451.

    Article  Google Scholar 

  19. Majorov, K. B., Lyadova, I. V., Kondratieva, T. K., Eruslanov, E. B., Rubakova, E. I., Orlova, M. O., Mischenko, V. V., and Apt, A. S. (2003) Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages, Infect. Immun., 71, 697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pichugin, A. V., Khaidukov, S. V., Moroz, A. M., and Apt, A. S. (1998) Capacity of murine T cells to retain long-term responsiveness to mycobacterial antigens is controlled by the H-2 complex, Clin. Exp. Immunol., 111, 316–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagarai, S., Youn, J. I., and Gabrilovich, D. I. (2013) Reciprocal relationship between myeloid-derived suppressor cells and T-cells, J. Immunol., 191, 17–23.

    Article  CAS  Google Scholar 

  22. Biological Magnetic Resonance Data Bank. Thymidine (http://bmrb.wisc.edu/metabolomics/mol_summary/show_data.php?molName=thymidine&id=bmse000244).

  23. Reiter, H. (1979) Effect of thymidine on the survival of mice with EL4 tumors, Cancer Res., 39, 4856–4860.

    CAS  PubMed  Google Scholar 

  24. Lyons, A. B., and Parish, C. R. (1994) Determination of lymphocyte division by flow cytometry, J. Immunol. Methods, 171, 131–137.

    Article  CAS  PubMed  Google Scholar 

  25. Iatropoulos, M. J., and Williams, G. M. (1996) Proliferation markers, Exp. Toxicol. Pathol., 48, 175–181.

    Article  CAS  PubMed  Google Scholar 

  26. Vega-Avila, E., and Pugsley, M. K. (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells, Proc. West Pharmacol. Soc., 54, 10–14.

    CAS  PubMed  Google Scholar 

  27. Opitz, H. G., Niethammer, D., Lemke, H., Flad, H. D., and Huget, R. (1975) Inhibition of 3H-thymidine incorporation of lymphocytes by a soluble factor from macrophages, Cell. Immunol., 16, 379–388.

    Article  CAS  PubMed  Google Scholar 

  28. Stadecker, M. J., Calderon, J., Karnovsky, M. L., and Unanue, E. R. (1977) Synthesis and release of thymidine by macrophages, J. Immunol., 119, 1738–1743.

    CAS  PubMed  Google Scholar 

  29. Spilsberg, B., Rise, F., Petersen, D., and Nissen-Meyer, J. (2006) Thymidine secretion by hybridoma and myeloma cells, Biochem. Biophys. Res. Commun., 342, 221–226.

    Article  CAS  PubMed  Google Scholar 

  30. Vorobjeva, N. V., and Pinegin, B. V. (2014) Neutrophil extracellular traps: mechanisms of formation and role in health and disease, Biochemistry (Moscow), 79, 1286–1296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Linge or A. S. Apt.

Additional information

Original Russian Text © I. A. Linge, E. V. Kondratieva, T. K. Kondratieva, V. A. Makarov, V. I. Polshakov, O. Yu. Savelyev, A. S. Apt, 2016, published in Biokhimiya, 2016, Vol. 81, No. 11, pp. 1530–1539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linge, I.A., Kondratieva, E.V., Kondratieva, T.K. et al. “Suppressor factor” of neutrophils: A short story of a long-term misconception. Biochemistry Moscow 81, 1284–1292 (2016). https://doi.org/10.1134/S0006297916110067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916110067

Keywords

Navigation