Skip to main content
Log in

Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells represent a heterogeneous population of immature myeloid cells. Under normal conditions, these cells differentiate into macrophages, dendritic cells, and granulocytes. However, in pathological states such as inflammation, infection, or tumor growth, there is an arrest of their differentiation that results in the accumulation of immature myeloid cells in the organism. In addition, these cells acquire a suppressor phenotype, expressing anti-inflammatory cytokines and reactive oxygen and nitrogen species, and suppress T-cell immune response. Myeloid-derived suppressor cells (MDSC) contribute to cancerogenesis by forming a favorable microenvironment for tumor growth. Proinflammatory cytokines, secreted by tumor cells and the tumor microenvironment, induce angiogenesis and metastasis and promote tumor growth. They also provide signals necessary for survival, accumulation, and function of MDSC. Understanding the mechanisms of myeloid suppressor cell development and the use of proinflammatory cytokine inhibitors may prove beneficial for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Arg1:

arginase 1

G-CSF:

granulocyte colonystimulating factor

GM-CSF:

granulocyte-macrophage colony-stimulating factor

IDO:

indolamine-2,3-dioxygenase

IL:

interleukin

iNOS:

inducible NO-synthase

M-CSF:

monocyte-macrophage colony-stimulating factor

MDSC:

myeloid-derived suppressor cells

ROS:

reactive oxygen species

sTNF:

soluble form of TNF

TCR:

T-cell receptor

TGF-ß:

transforming growth factor beta

tmTNF:

transmembrane TNF

TNF:

tumor necrosis factor

TNFR:

tumor necrosis factor receptor

Treg:

regulatory T cells

VEGF:

vascular endothelial growth factor

References

  1. Grivennikov, S. I., Greten, F. R., and Karin, M. (2010) Immunity, inflammation, and cancer, Cell, 140, 883–899.

    CAS  Google Scholar 

  2. Colotta, F., Allavena, P., Sica, A., Garlanda, C., and Mantovani, A. (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability, Carcinogenesis, 30, 1073–1081.

    CAS  PubMed  Google Scholar 

  3. Gabrilovich, D. I., Ostrand-Rosenberg, S., and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours, Nat. Rev. Immunol., 12, 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostrand-Rosenberg, S., and Sinha, P. (2009) Myeloidderived suppressor cells: linking inflammation and cancer, J. Immunol., 182, 4499–4506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ponomarev, A. V. (2016) Myeloid supressor cells: general properties, Immunologiya, 37, 47–50.

    Google Scholar 

  6. Trikha, P., and Carson, W. E., (2014) Signaling pathways involved in MDSC regulation, Biochim. Biophys. Acta, 1846, 55–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Centuori, S. M., Trad, M., LaCaßse, C. J., Alizadeh, D., Larmonier, C. B., Hanke, N. T., Kartchner, J., Janikashvili, N., Bonnotte, B., Larmonier, N., and Katsanis, E. (2012) Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-ß-induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25–FoxP3–Tcells, J. Leukoc. Biol., 92, 987–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Younos, I. H., Dafferner, A. J., Gulen, D., Britton, H. C., and Talmadge, J. E. (2012) Tumor regulation of myeloidderived suppressor cell proliferation and trafficking, Int. Immunopharmacol., 13, 245–256.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L., Chang, E. W., Wong, S. C., Ong, S. M., Chong, D. Q., and Ling, K. L. (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins, J. Immunol., 190, 794–804.

    Article  CAS  PubMed  Google Scholar 

  10. Gabrilovich, D. I., and Nagaraj, S. (2009) Myeloidderived-suppressor cells as regulators of the immune system, Nat. Rev. Immunol., 9, 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., and Pollard, J. W. (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, 475, 222–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allavena, P., Sica, A., Solinas, G., Porta, C., and Mantovani, A. (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages, Crit. Rev. Oncol. Hematol., 66, 1–9.

    Article  PubMed  Google Scholar 

  13. Draghiciu, O., Lubbers, J., Nijman, H. W., and Daemen, T. (2015) Myeloid derived suppressor cells–an overview of combat strategies to increase immunotherapy efficacy, Oncoimmunology, 4, e954829.

    Article  CAS  Google Scholar 

  14. Kumar, V., Patel, S., Tcyganov, E., and Gabrilovich, D. I. (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment, Trends Immunol., 37, 208–220.

    Article  CAS  PubMed  Google Scholar 

  15. Martino, A., Badell, E., Abadie, V., Balloy, V., Chignard, M., Mistou, M.-Y., Combadiere, B., Combadiere, C., and Winter, N. (2010) Mycobacterium bovis bacillus Calmette–Guerin vaccination mobilizes innate myeloidderived suppressor cells restraining in vivo T-cell priming via IL-1R-dependent nitric oxiDe production, J. Immunol., 184, 2038–2047.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez, P. C., Quiceno, D. G., and Ochoa, A. C. (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression, Blood, 109, 1568–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medzhitov, R., Shevach, E. M., Trinchieri, G., Mellor, A. L., Munn, D. H., Gordon, S., Libby, P., Hansson, G. K., Shortman, K., Dong, C., Gabrilovich, D., Gabrysova, L., Howes, A., and O’Garra, A. (2011) Highlights of 10 years of immunology in Nature Reviews Immunology, Nat. Rev. Immunol., 11, 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, J., Wang, Y., Yan, F., Zhang, P., Li, H., Zhao, H., Yan, C., Yan, F., and Ren, X. (2014) Noncanonical NF-kB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer, J. Immunol., 193, 2574–2586.

  19. Holmgaard, R. B., Zamarin, D., Li, Y., Gasmi, B., Munn, D. H., Allison, J. P., Merghoub, T., and Wolchok, J. D. (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner, Cell Rep., 13, 412424.

    Article  CAS  Google Scholar 

  20. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 87, 315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D. L., Schneck, J., and Gabrilovich, D. I. (2007) Altered recognition of antigen is a mechanism of CD8+ T-cell tolerance in cancer, Nat. Med., 13, 828–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmielau, J., and Finn, O. J. (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients, Cancer Res., 61, 4756–4760.

    CAS  PubMed  Google Scholar 

  23. Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P., and Segal, D. M. (2002) Myeloid suppressor lines inhibit T-cell responses by an no-dependent mechanism, J. Immunol., 168, 689695.

    Article  Google Scholar 

  24. Khan, A. I., Landis, R. C., and Malhotra, R. (2003) LSelectin ligands in lymphoid tissues and models of inflammation, Inflammation, 27, 265–280.

    Article  CAS  PubMed  Google Scholar 

  25. Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., and Ostrand-Rosenberg, S. (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T-cells, J. Immunol., 183, 937–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., De Palma, A., Mauri, P., Monegal, A., Rescigno, M., Savino, B., Colombo, P., Jonjic, N., Pecanic, S., Lazzarato, L., Fruttero, R., Gasco, A., Bronte, V., and Viola, A. (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T-cells, J. Exp. Med., 208, 1949–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakuishi, K., Jayaraman, P., Behar, S. M., Anderson, A. C., and Kuchroo, V. K. (2011) Emerging Tim-3 functions in antimicrobial and tumor immunity, Trends Immunol., 32, 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, H., Han, Y., Guo, Q., Zhang, M., and Cao, X. (2009) Cancer-expanded myeloid-derived suppreßsor cells induce anergy of NK-cells through membrane-bound TGF-ß1, J. Immunol., 182, 240–249.

    Article  CAS  PubMed  Google Scholar 

  29. Pan, P. Y., Ma, G., Weber, K. J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C. M., and Chen, S. H. (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T-regulatory cell activation mediated by myeloidderived suppressor cells in cancer, Cancer Res., 70, 99–108.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J., and Gabrilovich, D. I. (2008) Inhibition of dendritic cell differentiation and accumulation of myeloidderived suppressor cells in cancer is regulated by S100A9 protein, J. Exp. Med., 205, 2235–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Botta, C., Gulla, A., Correale, P., Tagliaferri, P., and Tassone, P. (2014) Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities, Front. Oncol., 4, 348.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hix, L. M., Karavitis, J., Khan, M. W., Shi, Y. H., Khazaie, K., and Zhang, M. (2013) Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells, J. Biol. Chem., 288, 11676–11688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003) IL-4induced arginase 1 suppresses alloreactive T-cells in tumorbearing mice, J. Immunol., 170, 270–278.

    Article  CAS  PubMed  Google Scholar 

  34. Kieslinger, M., Woldman, I., Moriggl, R., Hofmann, J., Marine, J. C., Ihle, J. N., Beug, H., and Decker, T. (2000) Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation, Genes Dev., 14, 232–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  36. Drutskaya, M. S., Efimov, G. A., Kruglov, A. A., Kuprash, D. V., and Nedospasov, S. A. (2010) Tumor necrosis factor, lymphotoxin and cancer, IUBMB Life, 62, 283–289.

    Article  CAS  Google Scholar 

  37. Coley, W. B. (1894) Treatment of inoperable malignant tumors with the toxines of erysipelas and the Bacillus prodigiosus, Am. J. Med. Sci., 108, 50–66.

    Article  Google Scholar 

  38. Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., Gould, D., Ayhan, A., and Balkwill, F. (2007) The inflammatory cytokine tumor necrosis factor-a generates an autocrine tumor-promoting network in epithelial ovarian cancer cells, Cancer Res., 67, 585–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., and Balkwill, F. (1999) Mice deficient in tumor necrosis factor-a are resistant to skin carcinogenesis, Nat. Med., 5, 828–831.

    Article  CAS  PubMed  Google Scholar 

  40. Popivanova, B. K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., Oshima, M., Fujii, C., and Mukaida, N. (2008) Blocking TNF-a in mice reduces colorectal carcinogenesis associated with chronic colitis, J. Clin. Invest., 118, 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y. (2004) NF-kB functions as a tumour promoter in inflammation-associated cancer, Nature, 431, 461–466.

    Article  CAS  PubMed  Google Scholar 

  42. Mohan, M. J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G. M., Becherer, J. D., Moss, M. L., and Milla, M. E. (2002) The tumor necrosis factor-alpha converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity, Biochemistry, 41, 9462–9469.

    Article  CAS  PubMed  Google Scholar 

  43. Bauer, J., Namineni, S., Reisinger, F., Zoller, J., Yuan, D., and Heikenwalder, M. (2012) Lymphotoxin, NF-kB, and cancer: the dark side of cytokines, Dig. Dis., 30, 453–468.

    Google Scholar 

  44. Zhang, H., Yan, D., Shi, X., Liang, H., Pang, Y., Qin, N., Chen, H., Wang, J., Yin, B., Jiang, X., Feng, W., Zhang, W., Zhou, M., and Li, Z. (2008) Transmembrane TNF-a mediates “forward” and “reverse” signaling, inducing cell death or survival via the NF-?B pathway in Raji Burkitt lymphoma cells, J. Leukoc. Biol., 84, 789–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aggarwal, B. B., Gupta, S. C., and Kim, J. H. (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey, Blood, 119, 651–665.

    CAS  PubMed  Google Scholar 

  46. Havell, E. A., Fiers, W., and North, R. J. (1988) The antitumor function of tumor necrosis factor (TNF). I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity, J. Exp. Med., 167, 1067–1085.

    CAS  Google Scholar 

  47. Puthier, D., Derenne, S., Barille, S., Moreau, P., Harousseau, J. L., Bataille, R., and Amiot, M. (1999) Mcl1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells, Br. J. Haematol., 107, 392–395.

    Article  CAS  PubMed  Google Scholar 

  48. Spets, H., Stromberg, T., Georgii-Hemming, P., Siljason, J., Nilsson, K., and Jernberg-Wiklund, H. (2002) Expression of the bcl-2 family of proand anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6(IL-6)-induced growth and survival, Eur. J. Haematol., 69, 76–89.

    Article  CAS  PubMed  Google Scholar 

  49. Neurath, M. F., and Finotto, S. (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammationassociated cancer, Cytokine Growth Factor Rev., 22, 83–89.

    Article  CAS  Google Scholar 

  50. Suematsu, S., Matsusaka, T., Matsuda, T., Ohno, S., Miyazaki, J., Yamamura, K., Hirano, T., and Kishimoto, T. (1992) Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice, Proc. Natl. Acad. Sci. USA, 89, 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grivennikov, S. I., and Karin, M. (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage, Ann. Rheum. Dis., 70 (Suppl. 1), i104–108.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., Lin, M. T., Kuo, M. L., and Lin, J. T. (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma, J. Biomed. Sci., 11, 517–527.

    Article  CAS  PubMed  Google Scholar 

  53. Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J. G., and Wang, T. C. (2008) Overexpreßsion of interleukin-1ß induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice, Cancer Cell, 14, 408–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Apte, R. N., and Voronov, E. (2008) Is interleukin-1 a good or bad “guy” in tumor immunobiology and immunotherapy? Immunol. Rev., 222, 222–241.

    Article  CAS  PubMed  Google Scholar 

  55. Lewis, A. M., Varghese, S., Xu, H., and Alexander, H. R. (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment, J. Transl. Med., 4, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., Song, X., Dvozkin, T., Krelin, Y., and Voronov, E. (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions, Cancer Metastasis Rev., 25, 387–408.

    CAS  PubMed  Google Scholar 

  57. Dinarello, C. A. (1996) Biologic basis for interleukin-1 in disease, Blood, 87, 2095–2147.

    CAS  PubMed  Google Scholar 

  58. Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello, C. A., and Apte, R. N. (2003) IL-1 is required for tumor invasiveness and angiogenesis, Proc. Natl. Acad. Sci. USA, 100, 2645–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Konishi, N., Miki, C., Yoshida, T., Tanaka, K., Toiyama, Y., and Kusunoki, M. (2005) Interleukin-1 receptor antagonist inhibits the expression of vascular endothelial growth factor in colorectal carcinoma, Oncology, 68, 138–145.

    Article  CAS  PubMed  Google Scholar 

  60. Shchors, K., Shchors, E., Rostker, F., Lawlor, E. R., Brown-Swigart, L., and Evan, G. I. (2006) The Mycdependent angiogenic switch in tumors is mediated by interleukin 1ß, Genes Dev., 20, 2527–2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sawai, H., Funahashi, H., Yamamoto, M., Okada, Y., Hayakawa, T., Tanaka, M., Takeyama, H., and Manabe, T. (2003) Interleukin-1a enhances integrin a6ß1 expression and metastatic capability of human pancreatic cancer, Oncology, 65, 167–173.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, X., Rong, L., Zhao, X., Li, X., Liu, X., Deng, J., Wu, H., Xu, X., Erben, U., Wu, P., Syrbe, U., Sieper, J., and Qin, Z. (2012) TNF signaling drives myeloid-derived suppressor cell accumulation, J. Clin. Invest., 122, 4094–4104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sander, L. E., Sackett, S. D., Dierssen, U., Beraza, N., Linke, R. P., Muller, M., Blander, J. M., Tacke, F., and Trautwein, C. (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function, J. Exp. Med., 207, 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sade-Feldman, M., Kanterman, J., Ish-Shalom, E., Elnekave, M., Horwitz, E., and Baniyash, M. (2013) Tumor necrosis factor-a blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation, Immunity, 38, 541–554.

    Article  CAS  PubMed  Google Scholar 

  65. Elkabets, M., Ribeiro, V. S., Dinarello, C. A., OstrandRosenberg, S., Di Santo, J. P., Apte, R. N., and Voßshenrich, C. A. (2010) IL-1ß regulates a novel myeloidderived suppressor cell subset that impairs NK cell development and function, Eur. J. Immunol., 40, 3347–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, M. F., Kuan, F. C., Yen, T. C., Lu, M. S., Lin, P. Y., Chung, Y. H., Chen, W. C., and Lee, K. D. (2014) IL-6stimulated CD11b+CD14+HLA-DR–myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus, Oncotarget, 5, 8716–8728.

    Google Scholar 

  67. Oh, K., Lee, O. Y., Shon, S. Y., Nam, O., Ryu, P. M., Seo, M. W., and Lee, D. S. (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 transsignaling in a murine model, Breast Cancer Res., 15, R79.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pereira, R., Lago, P., Faria, R., and Torres, T. (2015) Safety of anti-TNF therapies in immune-mediated inflammatory diseases: focus on infections and malignancy, Drug Dev. Res., 76, 419–427.

    Article  CAS  PubMed  Google Scholar 

  69. Van Hauwermeiren, F., Vandenbroucke, R. E., and Libert, C. (2011) Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1, Cytokine Growth Factor Rev., 22, 311–319.

    Article  CAS  PubMed  Google Scholar 

  70. Kaymakcalan, Z., Sakorafas, P., Bose, S., Scesney, S., Xiong, L., Hanzatian, D. K., Salfeld, J., and Sasso, E. H. (2009) Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor, Clin. Immunol., 131, 308–316.

    CAS  PubMed  Google Scholar 

  71. Furst, D. E., Wallis, R., Broder, M., and Beenhouwer, D. O. (2006) Tumor necrosis factor antagonists: different kinetics and/or mechanisms of action may explain differences in the risk for developing granulomatous infection, Semin. Arthritis Rheum., 36, 159–167.

    Article  CAS  PubMed  Google Scholar 

  72. Efimov, G. A., Kruglov, A. A., Khlopchatnikova, Z. V., Rozov, F. N., Mokhonov, V. V., Rose-John, S., Scheller, J., Gordon, S., Stacey, M., Drutskaya, M. S., Tillib, S. V., and Nedospasov, S. A. (2016) Cell-type-restricted anticytokine therapy: TNF inhibition from one pathogenic source, Proc. Natl. Acad. Sci. USA, 113, 3006–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Atretkhany, K. S., Nosenko, M. A., Gogoleva, V. S., Zvartsev, R. V., Qin, Z., Nedospasov, S. A., and Drutskaya, M. S. (2016) TNF neutralization results in the delay of transplantable tumor growth and reduced MDSC accumulation, Front. Immunol., 7, 147.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Egberts, J. H., Cloosters, V., Noack, A., Schniewind, B., Thon, L., Klose, S., Kettler, B., von Forstner, C., Kneitz, C., Tepel, J., Adam, D., Wajant, H., Kalthoff, H., and Trauzold, A. (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis, Cancer Res., 68, 1443–1450.

    Article  CAS  PubMed  Google Scholar 

  75. Harrison, M. L., Obermueller, E., Maisey, N. R., Hoare, S., Edmonds, K., Li, N. F., Chao, D., Hall, K., Lee, C., Timotheadou, E., Charles, K., Ahern, R., King, D. M., Eisen, T., Corringham, R., DeWitte, M., Balkwill, F., and Gore, M. (2007) Tumor necrosis factor a as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose, J. Clin. Oncol., 25, 4542–4549.

    Article  CAS  PubMed  Google Scholar 

  76. Larkin, J. M., Ferguson, T. R., Pickering, L. M., Edmonds, K., James, M. G., Thomas, K., Banerji, U., Berns, B., De Boer, C., and Gore, M. E. (2010) A phase I/II trial of sorafenib and infliximab in advanced renal cell carcinoma, Br. J. Cancer, 103, 1149–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sumida, K., Wakita, D., Narita, Y., Masuko, K., Terada, S., Watanabe, K., Satoh, T., Kitamura, H., and Nishimura, T. (2012) Anti-IL-6 receptor mAb eliminates myeloidderived suppressor cells and inhibits tumor growth by enhancing T-cell responses, Eur. J. Immunol., 42, 20602072.

    Article  CAS  Google Scholar 

  78. Kurzrock, R., Voorhees, P. M., Casper, C., Furman, R. R., Fayad, L., Lonial, S., Borghaei, H., Jagannath, S., Sokol, L., Usmani, S. Z., Van De Velde, H., Qin, X., Puchalski, T. A., Hall, B., Reddy, M., Qi, M., and Van Rhee, F. (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease, Clin. Cancer Res., 19, 3659–3670.

  79. Hong, D. S., Hui, D., Bruera, E., Janku, F., Naing, A., Falchook, G. S., Piha-Paul, S., Wheler, J. J., Fu, S., Tsimberidou, A. M., Stecher, M., Mohanty, P., Simard, J., and Kurzrock, R. (2014) MABp1, a first-in-class true human antibody targeting interleukin-1a in refractory cancers: an open-label, phase 1 dose-escalation and expansion study, Lancet Oncol., 15, 656–666.

    CAS  Google Scholar 

  80. Lust, J. A., Lacy, M. Q., Zeldenrust, S. R., Dispenzieri, A., Gertz, M. A., Witzig, T. E., Kumar, S., Hayman, S. R., Rußsell, S. J., Buadi, F. K., Geyer, S. M., Campbell, M. E., Kyle, R. A., Rajkumar, S. V., Greipp, P. R., Kline, M. P., Xiong, Y., Moon-Tasson, L. L., and Donovan, K. A. (2009) Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1ß-induced interleukin 6 production and the myeloma proliferative component, Mayo Clin. Proc., 84, 114–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stuelten, C. H., DaCosta Byfield, S., Arany, P. R., Karpova, T. S., Stetler-Stevenson, W. G., and Roberts, A. B. (2005) Breast cancer cells induce stromal fibroblasts to expreßs MMP-9 via secretion of TNF-a and TGF-ß, J. Cell Sci., 118, 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  82. Szlosarek, P., Charles, K. A., and Balkwill, F. R. (2006) Tumour necrosis factor-a as a tumour promoter, Eur. J. Cancer, 42, 745–750.

    Article  CAS  PubMed  Google Scholar 

  83. Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B. (1975) An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA, 72, 3666–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stoelcker, B., Ruhland, B., Hehlgans, T., Bluethmann, H., Luther, T., and Mannel, D. N. (2000) Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature, Am. J. Pathol., 156, 1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grunhagen, D. J., De Wilt, J. H., Graveland, W. J., Verhoef, C., Van Geel, A. N., and Eggermont, A. M. (2006) Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-a and melphalan for limb-threatening soft tissue sarcoma, Cancer, 106, 1776–1784.

    Article  CAS  PubMed  Google Scholar 

  86. Hu, X., Li, B., Li, X., Zhao, X., Wan, L., Lin, G., Yu, M., Wang, J., Jiang, X., Feng, W., Qin, Z., Yin, B., and Li, Z. (2014) Transmembrane TNF-a promotes suppressive activities of myeloid-derived suppressor cells via TNFR2, J. Immunol., 192, 1320–1331.

    Article  CAS  PubMed  Google Scholar 

  87. Polz, J., Remke, A., Weber, S., Schmidt, D., WeberSteffens, D., Pietryga-Krieger, A., Muller, N., Ritter, U., Mostbock, S., and Mannel, D. N. (2014) Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity, Immun. Inflamm. Dis., 2, 121–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Drutskaya.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 11, pp. 1520–1529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atretkhany, KS.N., Drutskaya, M.S. Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy. Biochemistry Moscow 81, 1274–1283 (2016). https://doi.org/10.1134/S0006297916110055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916110055

Keywords

Navigation