Skip to main content
Log in

Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812;1999.

    Article  PubMed  Google Scholar 

  2. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Dvorak HF, Senger DR. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 143:1255–1262;1993.

    PubMed  Google Scholar 

  3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407:249–257;2000.

    Article  PubMed  Google Scholar 

  4. Chen RH, Chang MC, Su YH, Tsai YT, Kuo ML. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem 274:23013–23019;1999.

    Article  PubMed  Google Scholar 

  5. Crabtree JE, Shallcross TM, Heatley RV, Wyatt JI. Mucosal tumour necrosis factor alpha and interleukin-6 in patients withHelicobacter pylori associated gastritis. Gut 32:1473–1477;1991.

    PubMed  Google Scholar 

  6. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95:2630–2636;2000.

    PubMed  Google Scholar 

  7. Fackler MJ, Civin CI, Sutherland DR, Baker MA, May WS. Activated protein kinase C directly phosphorylates the CD34 antigen on hematopoietic cells. J Biol Chem 265:11056–11061;1990.

    PubMed  Google Scholar 

  8. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543;1999.

    Article  PubMed  Google Scholar 

  9. Ferrara N. Timeline: VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803;2002.

    Article  PubMed  Google Scholar 

  10. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 9:669–676;2003.

    Article  PubMed  Google Scholar 

  11. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763;1995.

    Article  PubMed  Google Scholar 

  12. Fuchs CS, Mayer RJ. Gastric carcinoma. N Engl J Med 333:32–41;1995.

    Article  PubMed  Google Scholar 

  13. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277:38205–38211;2002.

    Article  PubMed  Google Scholar 

  14. Funamoto M, Fujio Y, Kunisada K, Negoro S, Tone E, Osugi T, Hirota H, Izumi M, Yoshizaki K, Walsh K, Kishimoto T, Yamauchi-Takihara K. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem 275:10561–10566;2000.

    Article  PubMed  Google Scholar 

  15. Gao N, Ding M, Zheng JZ, Zhang Z, Leonard SS, Liu KJ, Shi X, Jiang BH. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem 277:31963–31971;2002.

    Article  PubMed  Google Scholar 

  16. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: A model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4:121–133;1993.

    PubMed  Google Scholar 

  17. Guidi AJ, Abu-Jawdeh G, Berse B, Jackman RW, Tognazzi K, Dvorak HF, Brown LF. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 87:1237–1245;1995.

    PubMed  Google Scholar 

  18. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364;1996.

    Article  PubMed  Google Scholar 

  19. Hatzi E, Murphy C, Zoephel A, Rasmussen H, Morbidelli L, Ahorn H, Kunisada K, Tontsch U, Klenk M, Yamauchi-Takihara K, Ziche M, Rofstad EK, Schweigerer L, Fotsis T. N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene 21:3552–3561;2002.

    Article  PubMed  Google Scholar 

  20. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314;1998.

    PubMed  Google Scholar 

  21. Hobisch A, Rogatsch H, Hittmair A, Fuchs D, Bartsch G Jr, Klocker H, Bartsch G, Culig Z. Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol 191:239–244;2000.

    Article  PubMed  Google Scholar 

  22. Hsu CH, Yeh KH, Chen LT, Liu JM, Jan CM, Lin JT, Chen YC, Cheng AL. Weekly 24-hour infusion of high-dose 5-fluorouracil and leucovorin in the treatment of advanced gastric cancers. An effective and low-toxic regimen for patients with poor general condition. Oncology 54:275–280;1997.

    PubMed  Google Scholar 

  23. Huang SP, Wu MS, Shun CT, Wang HP, Lin JT. Tumor angiogenesis increases with nuclear p53 accumulation in gastric carcinoma. Hepatogastroenterology 49:1453–1456;2002.

    PubMed  Google Scholar 

  24. Huang SP, Wu MS, Wang HP, Yang CS, Kuo ML, Lin JT. Correlation between serum levels of interleukin-6 and vascular endothelial growth factor in gastric carcinoma. J Gastroenterol Hepatol 17:1165–1169;2002.

    Article  PubMed  Google Scholar 

  25. Juarez JC, Guan X, Shipulina NV, Plunkett ML, Parry GC, Shaw DE, Zhang JC, Rabbani SA, McCrae KR, Mazar AP, Morgan WT, Donate F. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidine-proline-rich domain. Cancer Res 62:5344–5350;2002.

    PubMed  Google Scholar 

  26. Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J, Grail D, Jenkins BJ, Ernst M, Giraud AS. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126:196–207;2004.

    Article  PubMed  Google Scholar 

  27. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 4:155–162;2001.

    Article  PubMed  Google Scholar 

  28. Kajitani T. The general rules for the gastric cancer study in surgery and pathology. I. Clinical classification. Jpn J Surg 11:127–139;1981.

    PubMed  Google Scholar 

  29. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312;1989.

    PubMed  Google Scholar 

  30. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739;2002.

    Article  PubMed  Google Scholar 

  31. Kim YM, Lee YM, Kim HS, Kim JD, Choi Y, Kim KW, Lee SY, Kwon YG. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 277:6799–6805;2002.

    Article  PubMed  Google Scholar 

  32. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254;1995.

    PubMed  Google Scholar 

  33. Kitadai Y, Takahashi Y, Haruma K, Naka K, Sumii K, Yokozaki H, Yasui W, Mukaida N, Ohmoto Y, Kajiyama G, Fidler IJ, Tahara E. Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br J Cancer 81:647–653;1999.

    Article  PubMed  Google Scholar 

  34. Kohno T, Mizukami H, Suzuki M, Saga Y, Takei Y, Shimpo M, Matsushita T, Okada T, Hanazono Y, Kume A, Sato I, Ozawa K. Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res 63:5091–5094;2003.

    PubMed  Google Scholar 

  35. Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598;1988.

    PubMed  Google Scholar 

  36. Lauren DR, Jensen DJ, Douglas JA, Follett JM. Efficient method for determining the glycyrrhizin content of fresh and dried roots, and root extracts, of Glycyrrhiza species. Phytochem Anal 12:332–335;2001.

    Article  PubMed  Google Scholar 

  37. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884;2001.

    Article  PubMed  Google Scholar 

  38. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309;1989.

    PubMed  Google Scholar 

  39. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, Tahir SA, Thompson TC. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61:4386–4392;2001.

    PubMed  Google Scholar 

  40. Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R. Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18:1423–1431;2000.

    PubMed  Google Scholar 

  41. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Sowa M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77:858–863;1996.

    Article  PubMed  Google Scholar 

  42. Maity A, Pore N, Lee J, Solomon D, O'Rourke DM. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60:5879–5886;2000.

    PubMed  Google Scholar 

  43. Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: Inhibition of ascites formation by immunoneutralization. Am J Pathol 153:1249–1256;1998.

    PubMed  Google Scholar 

  44. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528;1992.

    PubMed  Google Scholar 

  45. Renner U, Lohrer P, Schaaf L, Feirer M, Schmitt K, Onofri C, Arzt E, Stalla GK. Transforming growth factor-beta stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology 143:3759–3765;2002.

    Article  PubMed  Google Scholar 

  46. Saito H, Tsujitani S, Kondo A, Ikeguchi M, Maeta M, Kaibara N. Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma. Surgery 125:195–201;1999.

    PubMed  Google Scholar 

  47. Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 16:1471–1473;2002.

    PubMed  Google Scholar 

  48. Shih SC, Ju M, Liu N, Mo JR, Ney JJ, Smith LE. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: Mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci USA 100:15859–15864;2003.

    Article  PubMed  Google Scholar 

  49. Smith BD, Smith GL, Carter D, Sasaki CT, Haffty BG. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol 18:2046–2052;2000.

    PubMed  Google Scholar 

  50. Suzuki K, Hayashi N, Miyamoto Y, Yamamoto M, Ohkawa K, Ito Y, Sasaki Y, Yamaguchi Y, Nakase H, Noda K, Enomoto N, Arai K, Yamada Y, Yoshihara H, Tujimura T, Kawano K, Yoshikawa K, Kamada T. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res 56:3004–3009;1996.

    PubMed  Google Scholar 

  51. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968;1995.

    PubMed  Google Scholar 

  52. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T. Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol 15:826–832;1997.

    PubMed  Google Scholar 

  53. Tao HQ, Lin YZ, Wang RN. Significance of vascular endothelial growth factor messenger RNA expression in gastric cancer. World J Gastroenterol 4:10–13;1998.

    PubMed  Google Scholar 

  54. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60:6248–6252;2000.

    PubMed  Google Scholar 

  55. Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085;2002.

    Article  PubMed  Google Scholar 

  56. Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 271:29483–29488;1996.

    Article  PubMed  Google Scholar 

  57. Wei LH, Kuo ML, Chen CA, Cheng WF, Cheng SP, Hsieh FJ, Hsieh CY. Interleukin-6 in cervical cancer: The relationship with vascular endothelial growth factor. Gynecol Oncol 82:49–56;2001.

    Article  PubMed  Google Scholar 

  58. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22:1517–1527;2003.

    Article  PubMed  Google Scholar 

  59. Wu CW, Wang SR, Chao MF, Wu TC, Lui WY, P'eng FK, Chi CW. Serum interleukin-6 levels reflect disease status of gastric cancer. Am J Gastroenterol 91:1417–1422;1996.

    PubMed  Google Scholar 

  60. Xu L, Fukumura D, Jain RK. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: Mechanism of low pH-induced VEGF. J Biol Chem 277:11368–11374;2002.

    Article  PubMed  Google Scholar 

  61. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 407:242–248;2000.

    Article  PubMed  Google Scholar 

  62. Yuan A, Yu CJ, Luh KT, Kuo SH, Lee YC, Yang PC. Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer. J Clin Oncol 20:900–910;2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SP., Wu, MS., Shun, CT. et al. Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11, 517–527 (2004). https://doi.org/10.1007/BF02256101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256101

Key Words

Navigation