Skip to main content
Log in

Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Prolonged or excessive increase in the circulatory level of proinflammatory tumor necrosis factor (TNF) leads to abnormal activation and subsequent damage to endothelium. TNF at high concentrations causes apoptosis of endothelial cells. Previously, using mitochondria-targeted antioxidants of SkQ family, we have shown that apoptosis of endothelial cells is dependent on the production of reactive oxygen species (ROS) in mitochondria (mito-ROS). Now we have found that TNF at low concentrations does not cause cell death but activates caspase-3 and caspase-dependent increase in endothelial permeability in vitro. This effect is probably due to the cleavage of β-catenin–an adherent junction protein localized in the cytoplasm. We have also shown that extracellular matrix metalloprotease 9 (MMP9) VE-cadherin shedding plays a major role in the TNF-induced endothelial permeability. The mechanisms of the caspase-3 and MMP9 activation are probably not related to each other since caspase inhibition did not affect VE-cadherin cleavage and MMP9 inhibition had no effect on the caspase-3 activation. Mitochondria-targeted antioxidant SkQR1 inhibited TNF-induced increase in endothelial permeability. SkQR1 also inhibited caspase-3 activation, β-catenin cleavage, and MMP9-dependent VE-cadherin shedding. The data suggest that mito-ROS are involved in the increase in endothelial permeability due to the activation of both caspase-dependent cleavage of intracellular proteins and of MMP9-dependent cleavage of the transmembrane cell-to-cell contact proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac-DEVD-MCA:

L-acetyl-Asp-Glu-Val-Aspα-(4-methylcoumaryl-7-amide

DEVD:

N-carbobenzyloxyAsp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone

MMP:

matrix metalloprotease

NAC:

N-acetyl-D-cysteine

PARP:

poly(ADP-ribose) polymerase

ROS:

reactive oxygen species

SkQ:

conjugates of plastoquinone and penetrating cations

SkQ1:

plastoquinonyl-10(6′-decyltriphenyl)phosphonium

SkQR1:

10-(6′-plastoquinonyl)decylrhodamine 19

TNF:

tumor necrosis factor

ZVAD:

N-benzyloxycarbonyl-ValAla-Asp-trifluoromethyl

References

  1. Aird, W. C. (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome, Blood, 101, 3765–3777.

    Article  CAS  PubMed  Google Scholar 

  2. Peters, K., Unger, R. E., Brunner, J., and Kirkpatrick, C. J. (2003) Molecular basis of endothelial dysfunction in sepsis, Cardiovasc. Res., 60, 49–57.

    Article  CAS  PubMed  Google Scholar 

  3. Pober, J. S., and Sessa, W. C. (2007) Evolving functions of endothelial cells in inflammation, Nat. Rev. Immunol., 7, 803–815.

    Article  CAS  PubMed  Google Scholar 

  4. London, N. R., Zhu, W., Bozza, F. A., Smith, M. C., Greif, D. M., Sorensen, L. K., Chen, L., Kaminoh, Y., Chan, A. C., Passi, S. F., Day, C. W., Barnard, D. L., Zimmerman, G. A., Krasnow, M. A., and Li, D. Y. (2010) Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza, Sci. Transl. Med., 2, 23ra19.

  5. Dubois, B., Starckx, S., Pagenstecher, A., Oord, J., Arnold, B., and Opdenakker, G. (2002) Gelatinase B deficiency protects against endotoxin shock, Eur. J. Immunol., 32, 2163–2171.

    Article  CAS  PubMed  Google Scholar 

  6. Mulivor, A. W., and Lipowsky, H. H. (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline, Microcirculation, 16, 657–666.

    Article  CAS  PubMed  Google Scholar 

  7. Komarova, Y., and Malik, A. B. (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways, Annu. Rev. Physiol., 72, 463–493.

    Article  CAS  PubMed  Google Scholar 

  8. Dejana, E. (2004) Endothelial cell–cell junctions: happy together, Nat. Rev. Mol. Cell Biol., 5, 261–270.

    Article  CAS  PubMed  Google Scholar 

  9. Dejana, E., Orsenigo, F., and Lampugnani, M. G. (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability, J. Cell Sci., 121, 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  10. Vestweber, D. (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation, Arterioscler. Thromb. Vasc. Biol., 28, 223–232.

    Article  CAS  PubMed  Google Scholar 

  11. McKenzie, J. A., and Ridley, A. J. (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability, J. Cell. Physiol., 213, 221–228.

    Article  CAS  PubMed  Google Scholar 

  12. Wojciak-Stothard, B., and Ridley, A. J. (2002) Rho GTPases and the regulation of endothelial permeability, Vasc. Pharmacol., 39, 187–199.

    Article  CAS  Google Scholar 

  13. Angelini, D. J., Hyun, S. W., Grigoryev, D. N., Garg, P., Gong, P., Singh, I. S., Passaniti, A., Hasday, J. D., and Goldblum, S. E. (2006) TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia, Am. J. Physiol. Lung Cell. Mol. Physiol., 291, L1232–1245.

    Article  CAS  PubMed  Google Scholar 

  14. Herren, B., Levkau, B., Raines, E. W., and Ross, R. (1998) Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases, Mol. Biol. Cell, 9, 1589–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Culic, O., Gruwel, M. L., and Schrader, J. (1997) Energy turnover of vascular endothelial cells, Am. J. Physiol., 273, C205–213.

    CAS  PubMed  Google Scholar 

  16. Davidson, S. M., and Duchen, M. R. (2007) Endothelial mitochondria: contributing to vascular function and disease, Circ. Res., 100, 1128–1141.

    Article  CAS  PubMed  Google Scholar 

  17. Madamanchi, N. R., and Runge, M. S. (2007) Mitochondrial dysfunction in atherosclerosis, Circ. Res., 100, 460–473.

    Article  CAS  PubMed  Google Scholar 

  18. Schulz, E., Dopheide, J., Schuhmacher, S., Thomas, S. R., Chen, K., Daiber, A., Wenzel, P., Munzel, T., and Keaney, J. F., Jr. (2008) Suppression of the JNK pathway by induction of a metabolic stress response prevents vascular injury and dysfunction, Circulation, 118, 1347–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demyanenko, I. A., Popova, E. N., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Romashchenko, V. P., Fedorov, A. V., Manskikh, V. N., Skulachev, M. V., Zinovkin, R. A., Pletjushkina, O. Y., Skulachev, V. P., and Chernyak, B. V. (2015) Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice, Aging (Albany, N. Y.), 7, 475–485.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sidibe, A., Mannic, T., Arboleas, M., Subileau, M., Gulino-Debrac, D., Bouillet, L., Jan, M., Vandhuick, T., Le Loet, X., Vittecoq, O., and Vilgrain, I. (2012) Soluble VE-cadherin in rheumatoid arthritis patients correlates with disease activity: evidence for tumor necrosis factor alpha-induced VE-cadherin cleavage, Arthritis Rheum., 64, 77–87.

    Article  CAS  PubMed  Google Scholar 

  21. Galkin, I. I., Pletjushkina, O. Y., Zinovkin, R. A., Zakharova, V. V., Birjukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent TNFa-induced endothelial cell damage, Biochemistry (Moscow), 79, 124–130.

    Article  CAS  Google Scholar 

  22. Algeciras-Schimnich, A., Barnhart, B. C., and Peter, M. E. (2002) Apoptosis-independent functions of killer caspases, Curr. Opin. Cell. Biol., 14, 721–726.

    Article  CAS  PubMed  Google Scholar 

  23. Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526–539.

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Ramirez, M. A., Fischer, R., Torres-Badillo, C. C., Davies, H. A., Logan, K., Pfizenmaier, K., Male, D. K., Sharrack, B., and Romero, I. A. (2012) Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells, J. Immunol., 189, 3130–3139.

    Article  CAS  PubMed  Google Scholar 

  25. Bannerman, D. D., Sathyamoorthy, M., and Goldblum, S. E. (1998) Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins, J. Biol. Chem., 273, 35371–35380.

    Article  CAS  PubMed  Google Scholar 

  26. Zehendner, C. M., Librizzi, L., De Curtis, M., Kuhlmann, C. R., and Luhmann, H. J. (2011) Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage, PLoS One, 6, e16760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruewer, M., Luegering, A., Kucharzik, T., Parkos, C. A., Madara, J. L., Hopkins, A. M., and Nusrat, A. (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms, J. Immunol., 171, 6164–6172.

    Article  CAS  PubMed  Google Scholar 

  28. Petrache, I., Verin, A. D., Crow, M. T., Birukova, A., Liu, F., and Garcia, J. G. (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction, Am. J. Physiol. Lung Cell. Mol. Physiol., 280, L1168–1178.

    CAS  PubMed  Google Scholar 

  29. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.

    Article  CAS  Google Scholar 

  30. Edgell, C. J., McDonald, C. C., and Graham, J. B. (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization, Proc. Natl. Acad. Sci. USA, 80, 3734–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, C., Jamaluddin, M. S., Yan, S., Sheikh-Hamad, D., and Yao, Q. (2008) Human stanniocalcin-1 blocks TNFalpha-induced monolayer permeability in human coronary artery endothelial cells, Arterioscler. Thromb. Vasc. Biol., 28, 906–912.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Polunovsky, V. A., Wendt, C. H., Ingbar, D. H., Peterson, M. S., and Bitterman, P. B. (1994) Induction of endothelial cell apoptosis by TNF alpha: modulation by inhibitors of protein synthesis, Exp. Cell Res., 214, 584–594.

    Article  CAS  PubMed  Google Scholar 

  33. Ohmori, Y., Schreiber, R. D., and Hamilton, T. A. (1997) Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB, J. Biol. Chem., 272, 14899–14907.

    Article  CAS  PubMed  Google Scholar 

  34. Luo, T., and Xia, Z. (2006) A small dose of hydrogen peroxide enhances tumor necrosis factor-alpha toxicity in inducing human vascular endothelial cell apoptosis: reversal with propofol, Anesth. Analg., 103, 110–116.

    Article  CAS  PubMed  Google Scholar 

  35. Stolpen, A. H., Guinan, E. C., Fiers, W., and Pober, J. S. (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers, Am. J. Pathol., 123, 16–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dignat-George, F., and Sampol, J. (2000) Circulating endothelial cells in vascular disorders: new insights into an old concept, Eur. J. Haematol., 65, 215–220.

    Article  CAS  PubMed  Google Scholar 

  37. Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., Haubitz, M., Hebbel, R. P., Lip, G. Y., Mancuso, P., Sampol, J., Solovey, A., and Dignat-George, F. (2005) Circulating endothelial cells. Biomarker of vascular disease, Thromb. Haemost., 93, 228–235.

    CAS  PubMed  Google Scholar 

  38. Masckauchan, T. N., Shawber, C. J., Funahashi, Y., Li, C. M., and Kitajewski, J. (2005) Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells, Angiogenesis, 8, 43–51.

    Article  CAS  PubMed  Google Scholar 

  39. Jaiswal, A. S., Marlow, B. P., Gupta, N., and Narayan, S. (2002) Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells, Oncogene, 21, 8414–8427.

    Article  CAS  PubMed  Google Scholar 

  40. Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., and Gulino-Debrac, D. (2003) Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration, J. Biol. Chem., 278, 14002–14012.

    Article  CAS  PubMed  Google Scholar 

  41. Navaratna, D., McGuire, P. G., Menicucci, G., and Das, A. (2007) Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes, Diabetes, 56, 2380–2387.

    Article  CAS  PubMed  Google Scholar 

  42. Vilgrain, I., Sidibe, A., Polena, H., Cand, F., Mannic, T., Arboleas, M., Boccard, S., Baudet, A., Gulino-Debrac, D., Bouillet, L., Quesada, J. L., Mendoza, C., Lebas, J. F., Pelletier, L., and Berger, F. (2013) Evidence for post-translational processing of vascular endothelial (VE)-cadherin in brain tumors: towards a candidate biomarker, PLoS One, 8, e80056.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu, X., Guo, R., Chen, P., Wang, Q., and Cunningham, P. N. (2009) TNF induces caspase-dependent inflammation in renal endothelial cells through a Rhoand myosin light chain kinase-dependent mechanism, Am. J. Physiol. Renal Physiol., 297, F316–326.

    Article  CAS  PubMed  Google Scholar 

  44. Moon, S. K., Cha, B. Y., and Kim, C. H. (2004) ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway, J. Cell. Physiol., 198, 417–427.

    Article  CAS  PubMed  Google Scholar 

  45. Huhtala, P., Chow, L. T., and Tryggvason, K. (1990) Structure of the human type IV collagenase gene, J. Biol. Chem., 265, 11077–11082.

    CAS  PubMed  Google Scholar 

  46. Ichim, G., Lopez, J., Ahmed, S. U., Muthalagu, N., Giampazolias, E., Delgado, M. E., Haller, M., Riley, J. S., Mason, S. M., Athineos, D., Parsons, M. J., Van de Kooij, B., Bouchier-Hayes, L., Chalmers, A. J., Rooswinkel, R. W., Oberst, A., Blyth, K., Rehm, M., Murphy, D. J., and Tait, S. W. (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death, Mol. Cell, 57, 860–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany, N. Y.), 6, 661–674.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Galkin.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-170, September 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, I.I., Pletjushkina, O.Y., Zinovkin, R.A. et al. Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro . Biochemistry Moscow 81, 1188–1197 (2016). https://doi.org/10.1134/S0006297916100163

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100163

Key words

Navigation