Skip to main content
Log in

Cellular energetics as a target for tumor cell elimination

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Investigation of cancer cell metabolism has revealed variability of the metabolic profiles among different types of tumors. According to the most classical model of cancer bioenergetics, malignant cells primarily use glycolysis as the major metabolic pathway and produce large quantities of lactate with suppressed oxidative phosphorylation even in the presence of ample oxygen. This is referred to as aerobic glycolysis, or the Warburg effect. However, a growing number of recent studies provide evidence that not all cancer cells depend on glycolysis, and, moreover, oxidative phosphorylation is essential for tumorigenesis. Thus, it is necessary to consider distinctive patterns of cancer metabolism in each specific case. Chemoresistance of cancer cells is associated with decreased sensitivity to different types of antitumor agents. Stimulation of apoptosis is a major strategy for elimination of cancer cells, and therefore activation of mitochondrial functions with direct impact on mitochondria to destabilize them appears to be an important approach to the induction of cell death. Consequently, the design of combination therapies using acclaimed cytotoxic agents directed to induction of apoptosis and metabolic agents affecting cancer cell bioenergetics are prospective strategies for antineoplastic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocase

α-TOS:

a-tocopheryl succinate

CypD:

cyclophilin D

DCA:

dichloroacetate

2-DG:

2-deoxyglucose

HIF:

hypoxia inducible factor

HK:

hexokinase

MOM(P):

mitochondrial outer membrane (permeabilization)

MPT(P):

mitochondrial permeability transition (pore)

OXPHOS:

oxidative phosphorylation

ROS:

reactive oxygen species

VDAC:

voltage-dependent anion channel.

References

  1. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.

    Article  PubMed  CAS  Google Scholar 

  2. Lunt, S. Y., and Heiden, M. V. (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu. Rev. Cell Dev. Biol., 27, 441–464.

    Article  PubMed  CAS  Google Scholar 

  3. Tennant, D. A., Duran, R. V., Boulahbel, H., and Gottlieb, E. (2009) Metabolic transformation in cancer, Carcinogenesis, 30, 1269–1280.

    Article  PubMed  CAS  Google Scholar 

  4. Funes, J. M., Quintero, M., Henderson, S., Martinez, D., Qureshi, U., Westwood, C., Clements, M. O., Bourboulia, D., Pedley, R. B., Moncada, S., and Boshoff, C. (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production, Proc. Natl. Acad. Sci. USA, 104, 6223–6228.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Moreno-Sanchez, R., Rodriguez-Enriquez, S., MarinHernandez, A., and Saavedra, E. (2007) Energy metabolism in tumor cells, FEBS J., 274, 1393–1418.

    Article  PubMed  CAS  Google Scholar 

  6. Rodriguez-Enriquez, S., Carreno-Fuentes, L., GallardoPerez, J. C., Saavedra, E., Quezada, H., Vega, A., MarinHernandez, A., Olin-Sandoval, V., Torres-Marquez, M. E., and Moreno-Sanchez, R. (2010) Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma, Int. J. Biochem. Cell Biol., 42, 1744–1751.

    Article  PubMed  CAS  Google Scholar 

  7. Barbosa, I. A., Machado, N. G., Skildum, A. J., Scott, P. M., and Oliveira, P. J. (2012) Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies, Biochim. Biophys. Acta, 1826, 238–254.

    PubMed  CAS  Google Scholar 

  8. Ralph, S. J., Rodriguez-Enriquez, S., Neuzil, J., and Moreno-Sanchez, R. (2010) Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger, Mol. Aspects Med., 31, 29–59.

    Article  PubMed  CAS  Google Scholar 

  9. Vaughn, A., and Deshmukh, M. (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c, Nat. Cell Biol., 10, 1477–1483.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Cairns, R. A., Harris, I. S., and Mak, T. W. (2011) Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11, 85–95.

    Article  PubMed  CAS  Google Scholar 

  11. Gao, P., Tchernyshyov, I., Chang, T., and Lee, Y. (2009) cMyc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, 458, 762–765.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wise, D. R., Deberardinis, R. J., Mancuso, A., Sayed, N., Zhang, X., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., Mcmahon, S. B., and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction, PNAS, 105, 18782–18787.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Dang, C. V. (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism, Cancer Res., 70, 859–862.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Jose, C., Bellance, N., and Rossignol, R. (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta, 1807, 552–561.

    Article  PubMed  CAS  Google Scholar 

  15. Mazurek, S., Michel, A., and Eigenbrodt, E. (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates, J. Biol. Chem., 272, 4941–4952.

    Article  PubMed  CAS  Google Scholar 

  16. Rossignol, R., Gilkerson, R., and Aggeler, R. (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells, Cancer Res., 64, 985–993.

    Article  PubMed  CAS  Google Scholar 

  17. Moreadith, R., and Lehninger, A. (1984) Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria, J. Biol. Chem., 259, 6222–6227.

    PubMed  CAS  Google Scholar 

  18. Mandella, R., and Sauer, L. (1975) The mitochondrial malic enzymes. I. Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex, J. Biol. Chem., 250, 5877–5884.

    PubMed  CAS  Google Scholar 

  19. Brand, R. M., Lyons, R. H., and Midgley, A. R. (1994) Understanding the dynamics of cellular responsiveness to modifications of metabolic substrates in perifusion, J. Cell. Physiol., 160, 10–16.

    Article  PubMed  CAS  Google Scholar 

  20. Zu, X. L., and Guppy, M. (2004) Cancer metabolism: facts, fantasy, and fiction, Biochem. Biophys. Res. Commun., 313, 459–465.

    Article  PubMed  CAS  Google Scholar 

  21. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029–1033.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Gorlach, A., and Acker, H. (1994) pO2and pH-gradients in multicellular spheroids and their relationship to cellular metabolism and radiation sensitivity of malignant human tumor cells, Biochim. Biophys. Acta, 1227, 105–112.

    Article  PubMed  CAS  Google Scholar 

  23. Sutherland, R. (1998) Tumor hypoxia and gene expression, Acta Oncol., 37, 567–574.

    Article  PubMed  CAS  Google Scholar 

  24. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review, Cancer Res., 49, 6449–6465.

    CAS  Google Scholar 

  25. Matsumoto, A., Matsumoto, S., Sowers, A., Koscielniak, J., Trigg, N., Kuppusamy, P., Mitchell, J., Subramanian, S., Krishna, M., and Matsumoto, K. (2005) Absolute oxygen tension (pO2) in murine fatty and muscle tissue as determined by EPR, Magn. Reson. Med., 54, 1530–1535.

    Article  PubMed  Google Scholar 

  26. Schroeder, T., Yuan, H., Viglianti, B., Peltz, C., Asopa, S., Vujaskovic, Z., and Dewhirst, M. (2005) Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat, Cancer Res., 65, 5163–5171.

    Article  PubMed  CAS  Google Scholar 

  27. Mason, M. G., Nicholls, P., Wilson, M. T., and Cooper, C. E. (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 103, 708–713.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Gnaiger, E., Lassnig, B., Kuznetsov, A., Riege, A. G., and Margreiter, R. (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase, J. Exp. Biol., 201, 1129–1139.

    PubMed  CAS  Google Scholar 

  29. Pecina, P., Gnaiger, E., Zeman, J., Pronicka, E., and Houstek, T. (2004) Decreased affinity for oxygen of cytochromec oxidase in Leigh syndrome caused by SURF1 mutations, Am. J. Physiol. Cell Physiol., 287, C1384–C1388.

    Article  PubMed  CAS  Google Scholar 

  30. Matoba, S., Kang, J.-G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F., and Hwang, P. M. (2006) P53 regulates mitochondrial respiration, Science, 312, 1650–1653.

    Article  PubMed  CAS  Google Scholar 

  31. Pollard, P. J., Wortham, N. C., and Tomlinson, I. P. M. (2003) The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase, Ann. Med., 35, 632–639.

    Article  PubMed  CAS  Google Scholar 

  32. Robey, I. F., Lien, A. D., Welsh, S. J., Baggett, B. K., and Gillies, R. J. (2005) Hypoxia-inducible factor-1α and the glycolytic phenotype in tumors, Neoplasia, 7, 324–330.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Kroemer, G. (2006) Mitochondria in cancer, Oncogene, 25, 4630–4632.

    Article  PubMed  CAS  Google Scholar 

  34. Yeunga, S. J., Pand, J., and Leec, M.-H. (2008) Roles of p53, Myc and HIF-1 in regulating glycolysis–the seventh hallmark of cancer, Cell. Mol. Life Sci., 65, 3981–3999.

    Article  CAS  Google Scholar 

  35. Shaw, R. J. (2006) Glucose metabolism and cancer, Curr. Opin. Cell Biol., 18, 598–608.

    Article  PubMed  CAS  Google Scholar 

  36. Parlo, R., and Coleman, P. (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol, J. Biol. Chem., 259, 9997–10003.

    PubMed  CAS  Google Scholar 

  37. Briscoe, D., Fiskum, G., Holleran, A., and Kelleher, J. (1994) Acetoacetate metabolism in AS-30D hepatoma cells, Mol. Cell Biochem., 136, 131–137.

    Article  PubMed  CAS  Google Scholar 

  38. Dietzen, D., and Davis, E. (1993) Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria, Arch. Biochem. Biophys., 305, 91–102.

    CAS  Google Scholar 

  39. Schmitt, S., Schulz, S., Schropp, E.-M., Eberhagen, C., Simmons, A., Beisker, W., Aichler, M., and Zischka, H. (2014) Why to compare absolute numbers of mitochondria, Mitochondrion, 19 (Pt. A), 113–123.

    Article  PubMed  CAS  Google Scholar 

  40. Pedersen, P. (1978) Tumor mitochondria and the bioenergetics of cancer cells, Prog. Exp. Tumor Res., 22, 190–274.

    Article  PubMed  CAS  Google Scholar 

  41. LaNoue, K., Hemington, J., Ohnishi, T., Morris, H., and Williamson, J. (1974) Defects in anion and electron transport in Morris hepatoma mitochondria, Horm. Cancer, 131–167.

    Google Scholar 

  42. Lichtor, T., and Dohrmann, G. (1987) Oxidative metabolism and glycolysis in benign brain tumors, Neurosurgery, 67, 336–340.

    Article  CAS  Google Scholar 

  43. Melo, R., Stevan, F., Campello, A., Carnieri, E., and de Oliveira, M. (1998) Occurrence of the Crabtree effect in HeLa cells, Cell Biochem. Funct., 16, 99–105.

    Article  PubMed  CAS  Google Scholar 

  44. Sauer, L. (1977) On the mechanism of the Crabtree effect in mouse ascites tumor cells, J. Cell Physiol., 93, 313–316.

    Article  PubMed  CAS  Google Scholar 

  45. Sussman, I., Erecinska, M., and Wilson, D. (1980) Regulation of cellular energy metabolism: the Crabtree effect, Biochim. Biophys. Acta, 591, 209–223.

    Article  PubMed  CAS  Google Scholar 

  46. Seshagiri, P., and Bavister, B. (1991) Glucose and phosphate inhibit respiration and oxidative metabolism in cultured hamster eight-cell embryos: evidence for the “Crabtree effect”, Mol. Reprod. Dev., 30, 105–111.

    Article  PubMed  CAS  Google Scholar 

  47. Yang, X., Borg, L., and Eriksson, U. (1997) Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose, Am. J. Physiol., E173–E180.

    Google Scholar 

  48. Rodriguez-Enriquez, S., Juarez, O., Rodriguez-Zavala, J. S., and Moreno-Sanchez, R. (2001) Multisite control of the Crabtree effect in ascites hepatoma cells, Eur. J. Biochem., 268, 2512–2519.

    Article  PubMed  CAS  Google Scholar 

  49. Covian, R., and Moreno-Sanchez, R. (2001) Role of protonatable groups of bovine heart bc1 complex in ubiquinol binding and oxidation, Eur. J. Biochem., 268, 5783–5790.

    Article  PubMed  CAS  Google Scholar 

  50. Tsujimoto, Y., Ikegaki, N., and Croce, C. M. (1987) Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma, Oncogene, 2, 3–7.

    PubMed  CAS  Google Scholar 

  51. Belmar, J., and Fesik, S. W. (2014) Small molecule Mcl-1 inhibitors for the treatment of cancer, Pharmacol. Ther., 145, 76–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Dutta, S., Gulla, S., Chen, T. S., Fire, E., Grant, R. A., and Keating, A. E. (2010) Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL, J. Mol. Biol., 398, 747–762.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Moldoveanu, T., Follis, A. V., Kriwacki, R. W., and Green, D. R. (2014) Many players in BCL-2 family affairs, Trends Biochem. Sci., 39, 101–111.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Chen, L., Willis, S., Wei, A., Smith, B., Fletcher, J., Hinds, M., Colman, P., Day, C., Adams, J., and Huang, D. (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function, Mol. Cell, 17, 393–403.

    Article  PubMed  CAS  Google Scholar 

  55. Biasutto, L., Dong, L.-F., Zoratti, M., and Neuzil, J. (2010) Mitochondrially targeted anti-cancer agents, Mitochondrion, 10, 670–681.

    Article  PubMed  CAS  Google Scholar 

  56. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol., 18, 165–173.

    Article  PubMed  CAS  Google Scholar 

  57. Hartman, M., and Czyz, M. (2012) Pro-apoptotic activity of BH3-only proteins and BH3 mimetics: from theory to potential cancer therapy, Anticancer Agents Med. Chem., 12, 966–981.

    Article  PubMed  CAS  Google Scholar 

  58. Gogvadze, V., Robertson, J. D., Zhivotovsky, B., and Orrenius, S. (2001) Cytochrome c release occurs via Ca2+dependent and Ca2+-independent mechanisms that are regulated by Bax, J. Biol. Chem., 276, 19066–19071.

    Article  PubMed  CAS  Google Scholar 

  59. Armstrong, J. S. (2006) The role of the mitochondrial permeability transition in cell death, Mitochondrion, 6, 225–234.

    Article  PubMed  CAS  Google Scholar 

  60. Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y. (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria, Proc. Natl. Acad. Sci. USA, 95, 14681–14686.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Brenner, C., Cadiou, H., Vieira, H. L., Zamzami, N., Marzo, I., Xie, Z., Leber, B., Andrews, D., Duclohier, H., Reed, J. C., and Kroemer, G. (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator, Oncogene, 19, 329–336.

    Article  PubMed  CAS  Google Scholar 

  62. Crompton, M., Barksby, E., Johnson, N., and Capano, M. (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death, Biochimie, 84, 143–152.

    Article  PubMed  CAS  Google Scholar 

  63. Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G. (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis, Science, 281, 2027–2031.

    Article  PubMed  CAS  Google Scholar 

  64. Rostovtseva, T. K., Antonsson, B., Suzuki, M., Youle, R. J., Colombini, M., and Bezrukov, S. M. (2004) Bid, but not Bax, regulates VDAC channels, J. Biol. Chem., 279, 13575–13583.

    Article  PubMed  CAS  Google Scholar 

  65. Green, D. R., and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death, Science, 305, 626–629.

    Article  PubMed  CAS  Google Scholar 

  66. Arora, K. K., and Pedersen, P. L. (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP, J. Biol. Chem., 263, 17422–17428.

    PubMed  CAS  Google Scholar 

  67. Vander Heiden, M. G., Li, X. X., Gottleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane, J. Biol. Chem., 276, 19414–19419.

    Article  PubMed  CAS  Google Scholar 

  68. Tan, W., and Colombini, M. (2007) VDAC closure increases calcium ion flux, Biochim. Biophys. Acta, 29, 2510–2515.

    Article  CAS  Google Scholar 

  69. Shulga, N. (2009) Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism, Cell Cycle, 8, 3355–3364.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Mathupala, S., Ko, Y., and Pedersen, P. (2012) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria, Oncogene, 25, 4777–4786.

    Article  CAS  Google Scholar 

  71. Pastorino, J., and Hoek, J. (2008) Regulation of hexokinase binding to VDAC, J. Bioenerg. Biomembr., 40, 171–182.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Schindler, A., and Foley, E. (2013) Hexokinase 1 blocks apoptotic signals at the mitochondria, Cell. Signal., 25, 2685–2692.

    Article  PubMed  CAS  Google Scholar 

  73. Robey, R. B., and Hay, N. (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt, Oncogene, 25, 4683–4696.

    CAS  Google Scholar 

  74. Shinohara, Y., Ishida, T., Hino, M., Yamazaki, N., Baba, Y., and Terada, H. (2000) Characterization of porin isoforms expressed in tumor cells, Eur. J. Biochem., 267, 6067–6073.

    Article  PubMed  CAS  Google Scholar 

  75. Kennedy, S. G., Kandel, E. S., Cross, T. K., and Hay, N. (1999) Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria, Mol. Cell. Biol., 19, 5800–5810.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Yamaguchi, A., Tamatani, M., Matsuzaki, H., Namikawa, K., Kiyama, H., Vitek, M. P., Mitsuda, N., and Tohyama, M. (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53, J. Biol. Chem., 276, 5256–5264.

    Article  PubMed  CAS  Google Scholar 

  77. Del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt, Science, 278, 687–699.

    Article  PubMed  CAS  Google Scholar 

  78. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A., and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters, Oncogene, 22, 8983–8998.

    Article  PubMed  CAS  Google Scholar 

  79. Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2010) The Warburg effect and mitochondrial stability in cancer cells, Mol. Aspects Med., 31, 60–74.

    Article  PubMed  CAS  Google Scholar 

  80. Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., Chandel, N. S., Thompson, C. B., Robey, R. B., and Hay, N. (2004) Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak, Mol. Cell, 16, 819–830.

    Article  PubMed  CAS  Google Scholar 

  81. Mookherjee, P., and Quintanilla, R. (2007) Mitochondrialtargeted active Akt protects SH-SY5Y neuroblastoma cells from staurosporine-induced apoptotic cell death, J. Cell Biochem., 102, 196–210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Weinberg, S. E., and Chandel, N. S. (2015) Targeting mitochondria metabolism for cancer therapy, Nat. Publ. Gr., 11, 9–15.

    CAS  Google Scholar 

  83. Neuzil, J., Dong, L. F., Rohlena, J., Truksa, J., and Ralph, S. J. (2013) Classification of mitocans, anti-cancer drugs acting on mitochondria, Mitochondrion, 13, 199–208.

    CAS  Google Scholar 

  84. Lea, M. A., Qureshi, M. S., Buxhoeveden, M., Gengel, N., Kleinschmit, J., and DesBordes, C. (2013) Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides, Anticancer Res., 33, 401–407.

    PubMed  CAS  Google Scholar 

  85. Loar, P., Wahl, H., Kshirsagar, M., Gossner, G., Griffith, K., and Liu, J. R. (2010) Inhibition of glycolysis enhances cisplatin-induced apoptosis in ovarian cancer cells, Am. J. Obstet. Gynecol., 202, 1–8.

    Article  CAS  Google Scholar 

  86. Maher, J. C., Krishan, A., and Lampidis, T. J. (2004) Greater cell cycle inhibition and cytotoxicity induced by 2deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions, Cancer Chemother. Pharmacol., 53, 116–122.

    Article  PubMed  CAS  Google Scholar 

  87. Sullivan, E. J., Kurtoglu, M., Brenneman, R., Liu, H., and Lampidis, T. J. (2014) Targeting cisplatin-resistant human tumor cells with metabolic inhibitors, Cancer Chemother. Pharmacol., 73, 417–427.

    Article  PubMed  CAS  Google Scholar 

  88. Birsoy, K., Wang, T., Possemato, R., Yilmaz, O., Koch, C., Chen, W., Hutchins, A., Gultekin, Y., Peterson, T., Carette, J., Brummelkamp, T., Clish, C., and Sabatini, D. M. (2012) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors, Changes, 29, 997–1003.

    Google Scholar 

  89. Urakami, K., Zangiacomi, V., Yamaguchi, K., and Kusuhara, M. (2013) Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line, Biomed. Res., 34, 221–229.

    Article  PubMed  CAS  Google Scholar 

  90. Xu, R., Pelicano, H., and Zhou, Y. (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia, 65, 613–621.

    CAS  Google Scholar 

  91. Ralph, S. J., Low, P., Dong, L., Lawen, A., and Neuzil, J. (2006) Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents, Recent Pat. Anticancer Drug Discov., 1, 327–346.

    Article  PubMed  CAS  Google Scholar 

  92. Zu, X. L., and Guppy, M. (2004) Cancer metabolism: facts, fantasy, and fiction, Biochem. Biophys. Res. Commun., 313, 459–465.

    Article  PubMed  CAS  Google Scholar 

  93. Dang, C. V., and Semenza, G. L. (1999) Oncogenic alterations of metabolism, Trends Biochem. Sci., 24, 68–72.

    Article  PubMed  CAS  Google Scholar 

  94. Griguer, C. E., Oliva, C. R., and Gillespie, G. Y. (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines, J. Neurooncol., 74, 123–133.

    Article  PubMed  CAS  Google Scholar 

  95. Mathupala, S. P., Ko, Y. H., and Pedersen, P. L. (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies, Biochim. Biophys. Acta–Bioenergetics, 1797, 1225–1230.

    Article  CAS  Google Scholar 

  96. Solaini, G., Sgarbi, G., and Baracca, A. (2011) Oxidative phosphorylation in cancer cells, Biochim. Biophys. Acta, 1807, 534–542.

    Article  PubMed  CAS  Google Scholar 

  97. Reitzer, L., Wice, B., and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem., 254, 2669–2676.

    PubMed  CAS  Google Scholar 

  98. Fuchs, B. C., and Bode, B. P. (2006) Stressing out over survival: glutamine as an apoptotic modulator, J. Surg. Res., 131, 26–40.

    Article  PubMed  CAS  Google Scholar 

  99. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R., and Lazebnik, Y. (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells, J. Cell Biol., 178, 93–105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Ladurner, A. G. (2006) Rheostat control of gene expression by metabolites, Mol. Cell, 24, 1–11.

    Article  PubMed  CAS  Google Scholar 

  101. Jonas, E. A., Hickman, J. A., Chachar, M., Polster, B. M., Brandt, T. A., Fannjiang, Y., Ivanovska, I., Basanez, G., Kinnally, K. W., Zimmerberg, J., Hardwick, J. M., and Kaczmarek, L. K. (2004) Proapoptotic N-truncated BCLxL protein activates endogenous mitochondrial channels in living synaptic terminals, Proc. Natl. Acad. Sci. USA, 101, 13590–13595.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Baggetto, L. G. (1992) Deviant energetic metabolism of glycolytic cancer cells, Biochimie, 74, 959–974.

    Article  PubMed  CAS  Google Scholar 

  103. Newsholme, E., Crabtree, B., and Ardawi, M. (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells, Biosci. Rep., 400, 393–400.

    Article  Google Scholar 

  104. Kruspig, B., Zhivotovsky, B., and Gogvadze, V. (2014) Mitochondrial substrates in cancer: drivers or passengers? Mitochondrion, 19, Pt. A, 8–19.

    Article  PubMed  CAS  Google Scholar 

  105. Smolkova, K., Plecita-Hlavata, L., Bellance, N., Benard, G., Rossignol, R., and Jezek, P. (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells, Int. J. Biochem. Cell Biol., 43, 950–968.

    Article  PubMed  CAS  Google Scholar 

  106. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C. T., Lopaschuk, G. D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C. J., Andrade, M. A., Thebaud, B., and Michelakis, E. D. (2007) A mitochondria–K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer Cell, 11, 37–51.

    Article  PubMed  CAS  Google Scholar 

  107. Cai, P., Boor, P. J., Khan, M., Kaphalia, B. S., Ansari, G. A., and Konig, R. (2007) Immunoand hepato-toxicity of dichloroacetic acid in MRL+/+ and B6C3F1 mice, J. Immunotoxicol., 4, 107–115.

    Article  PubMed  CAS  Google Scholar 

  108. Moungjaroen, J., Nimmannit, U., Callery, P. S., Wang, L., Azad, N., Lipipun, V., Chanvorachote, P., and Rojanasakul, Y. (2006) Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 downregulation, J. Pharmacol. Exp. Ther., 319, 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  109. Simbula, G., Columbano, A., Ledda-Columbano, G. M., Sanna, L., Deidda, M., Diana, A., and Pibiri, M. (2007) Increased ROS generation and p53 activation in alphalipoic acid-induced apoptosis of hepatoma cells, Apoptosis, 12, 113–123.

    Article  PubMed  CAS  Google Scholar 

  110. Feron, O. (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells, Radiother. Oncol., 92, 329–333.

    Article  PubMed  CAS  Google Scholar 

  111. Dong, L., Low, P., Dyason, J., and Wang, X. (2008) αTocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II, Oncogene, 27, 4324–4335.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Baggetto, L., and Testa-Parussini, R. (1990) Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability, Arch. Biochem. Biophys., 283, 241–248.

    Article  PubMed  CAS  Google Scholar 

  113. Kruspig, B., Nilchian, A., Bejarano, I., Orrenius, S., Zhivotovsky, B., and Gogvadze, V. (2012) Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression, Cell. Mol. Life Sci., 69, 2091–2099.

    Article  PubMed  CAS  Google Scholar 

  114. Truksa, J., Dong, L.-F., Rohlena, J., Stursa, J., Vondrusova, M., Goodwin, J., Nguyen, M., Kluckova, K., Rychtarcikova, Z., Lettlova, S., Spacilova, J., Stapelberg, M., Zoratti, M., and Neuzil, J. (2015) Mitochondrially targeted vitamin E succinate modulates expression of mitochondrial DNA transcripts and mitochondrial biogenesis, Antioxid. Redox Signal., 22, 883–900.

    Article  PubMed  CAS  Google Scholar 

  115. Liu, Z., Zhang, Y., Zhang, Q., Zhao, S., Wu, C., Cheng, X., Jiang, C., Jiang, Z., and Liu, H. (2014) 3Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway, Anticancer Drugs, 25, 447–455.

    Article  PubMed  CAS  Google Scholar 

  116. Macchioni, L., Davidescu, M., and Roberti, R. (2014) The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria, J. Bioenerg. Biomembr., 46, 389–394.

    Article  PubMed  CAS  Google Scholar 

  117. Pereira da Silva, A. P., El-Bacha, T., Kyaw, N., dos Santos, R. S., da Silva, W. S., Almeida, F. C. L., Da Poian, A. T., and Galina, A. (2009) Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate, Biochem. J., 417, 717–726.

    Article  PubMed  CAS  Google Scholar 

  118. Cardaci, S., Rizza, S., Filomeni, G., Bernardini, R., Bertocchi, F., Mattei, M., Paci, M., Rotilio, G., and Ciriolo, M. R. (2012) Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1, Cancer Res., 72, 4526–4536.

    Article  PubMed  CAS  Google Scholar 

  119. Van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Adams, J. M., Roberts, A. W., and Huang, D. C. S. (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized, Cancer Cell, 10, 389–399.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Fulda, S., Galluzzi, L., and Kroemer, G. (2010) Targeting mitochondria for cancer therapy, Nat. Rev. Drug. Discov., 9, 447–464.

    Article  PubMed  CAS  Google Scholar 

  121. Lessene, G., Czabotar, P. E., and Colman, P. M. (2008) BCL-2 family antagonists for cancer therapy, Nat. Rev. Drug Discov., 7, 989–1000.

    Article  PubMed  CAS  Google Scholar 

  122. Albershardt, T. C., Salerni, B. L., Soderquist, R. S., Bates, D. J., Pletnev, A. A., Kisselev, A. F., and Eastman, A. (2011) Multiple BH3 mimetics antagonize antiapoptotic MCL-1 protein by inducing the endoplasmic reticulum stress response and upregulating BH3-only protein NOXA, J. Biol. Chem., 286, 24882–24895.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Billard, C. (2013) BH3 mimetics: status of the field and new developments, Mol. Cancer Ther., 12, 1691–1700.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, Z., Song, T., Zhang, T., Gao, J., Wu, G., An, L., and Du, G. (2010) A novel BH3 mimetic S1 potently induces Bax/Bak-dependent apoptosis by targeting both Bcl-2 and Mcl-1, J. Cancer, 128, 1724–1735.

    Google Scholar 

  125. Soderquist, R., Pletnev, A. A., Danilov, A. V., and Eastman, A. (2013) The putative BH3 amimetic S1 sensitizes leukemia to ABT-737 by increasing reactive oxygen species, inducing endoplasmic reticulum stress, and upregulating the BH3-only protein NOXA, Apoptosis, 19, 201–209.

    Google Scholar 

  126. Zhong, J. T., Xu, Y., Yi, H. W., Su, J., Yu, H. M., Xiang, X. Y., Li, X. N., Zhang, Z. C., and Sun, L. K. (2012) The BH3 mimetic S1 induces autophagy through ER stress and disruption of Bcl-2/Beclin 1 interaction in human glioma U251 cells, Cancer Lett., 323, 180–187.

    Article  PubMed  CAS  Google Scholar 

  127. Song, T., Li, X., Chang, X., Liang, X., Zhao, Y., and Wu, G. Y. (2013) 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) derivatives as panBcl-2-inhibitors of Bcl-2, Bcl-xL and Mcl-1, Bioorg. Med. Chem., 21, 11–20.

    Article  PubMed  CAS  Google Scholar 

  128. Song, T., Chen, Q., Li, X., Chai, G., and Zhang, Z. C. (2013) Correction to 3-thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1)-based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure–activity relationship studies, J. Med. Chem., 56, 9366–9367.

    Article  CAS  Google Scholar 

  129. Ponassi, R., Biasotti, B., Tomati, V., Bruno, S., Poggi, A., Malacarne, D., Cimoli, G., Salis, A., Pozzi, S., Miglino, M., Damonte, G., Cozzini, P., Spyraki, F., Campanini, B., Bagnasco, L., Castagnino, N., Tortolina, L., Mumot, A., Frassoni, F., Daga, A., Cilli, M., Piccardi, F., Monfardini, I., Perugini, M., Zoppoli, G., D’Arrigo, C., Pesenti, R., and Parodi, S. (2008) A novel Bim-BH3derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex vivo anti-leukemic activity, Cell Cycle, 7, 3211–3224.

    Article  PubMed  CAS  Google Scholar 

  130. Ghiotto, F., Fais, F., Tenca, C., Tomati, V., Morabito, F., Casciaro, S., Mumot, A., Zoppoli, G., Ciccone, E., Parodi, S., and Bruno, S. (2009) Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic, Cancer Biol. Ther., 8, 263–271.

    Article  PubMed  CAS  Google Scholar 

  131. Cheng, G., Zielonka, J., Dranka, B. P., McAllister, D., Mackinnon, A. C., Jr., Joseph, J., and Kalyanaraman, B. (2012) Mitochondria targeted drugs synergize with 2deoxyglucose to trigger breast cancer cell death, Cancer Res., 72, 2634–2644.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Sahra, I. B., Laurent, K., Giuliano, S., Larbret, F., Ponzio, G., Gounon, P., Le Marchand-Brustel, Y., Giorgetti-Peraldi, S., Cormont, M., Bertolotto, C., Deckert, M., Auberger, P., Tanti, J. F., and Bost, F. (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells, Cancer Res., 70, 2465–2475.

    Article  PubMed  CAS  Google Scholar 

  133. Zhai, X., Yang, Y., Wan, J., Zhu, R., and Wu, Y. (2013) Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells, Oncol. Rep., 30, 2983–2991.

    PubMed  CAS  Google Scholar 

  134. Meynet, O., Beneteau, M., Jacquin, M. A., Pradelli, L. A., Cornille, A., Carles, M., and Ricci, J.-E. (2012) Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis, Leukemia, 26, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gogvadze.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 2, pp. 147–165.

Originally published in Biochemistry (Moscow) On-Line Papers in Press as Manuscript BM15-173, December 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximchik, P.V., Kulikov, A.V., Zhivotovsky, B.D. et al. Cellular energetics as a target for tumor cell elimination. Biochemistry Moscow 81, 65–79 (2016). https://doi.org/10.1134/S0006297916020012

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916020012

Key words

Navigation