Skip to main content

Advertisement

Log in

Amyloids: from pathogenesis to function

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The term “amyloids” refers to fibrillar protein aggregates with cross-ß structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sipe, J. D., and Cohen, A. S. (2000) Review: history of amyloid fibril, J. Struct. Biol., 130, 88–89.

    Article  CAS  PubMed  Google Scholar 

  2. Buxbaum, J. N., and Linke, R. P. (2000) A molecular history of the amyloidoses, J. Mol. Biol., 421, 142–159.

    Article  CAS  Google Scholar 

  3. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2012) Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis, Amyloid, 19, 167–170.

    Article  CAS  PubMed  Google Scholar 

  4. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2014) Nomenclature 2014: amyloid fibril proteins and clinical classification of amyloidosis, Amyloid, 21, 221–224.

    Article  PubMed  Google Scholar 

  5. Eanes, E. D., and Glenner, J. (1968) X-Ray diffraction studies on amyloid filaments, Histochem. Cytochem., 16, 673–677.

    Article  CAS  Google Scholar 

  6. Wickner, R. B., Edskes, H. K., Bateman, D. A., Kelly, A. C., Gorkovskiy, A., Dayani, Y., and Zhou, A. (2013) Amyloids and yeast prion biology, Biochemistry, 52, 1514–1527.

    Article  CAS  PubMed  Google Scholar 

  7. Tycko, R., and Wickner, R. B. (2013) Amyloid structure: conformational diversity and consequences, Acc. Chem. Res., 46, 1487–1496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Toyama, B. H., and Weissman, J. S. (2011) Amyloid structure: conformational diversity and consequences, in Annual Review of Biochemistry, Vol. 80 (Kornberg, R. D., Raetz, C. R. H., Rothman, J. E., and Thorner, J. W., eds.), pp. 557–585.

    Article  CAS  PubMed  Google Scholar 

  9. Qiang, W., Yau, W. M., Luo, Y. Q., Mattson, M. P., and Tycko, R. (2012) Antiparallel ß-sheet architecture in Iowamutant ß-amyloid fibrils, Proc. Natl. Acad. Sci. USA, 109, 4443–4448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tycko, R., Sciarretta, K. L., Orgel, J., and Meredith, S. C. (2009) Evidence for novel ß-sheet structures in Iowamutant ß-amyloid fibrils, Biochemistry, 48, 6072–6084.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lansbury, P. T., Costa, P. R., Griffiths, J. M., Simon, E. J., Auger, M., Halverson, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn, T. T., Spencer, R. G. S., Tidor, B., and Griffin, R. G. (1995) Structural model for the ß-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide, Nat. Struct. Biol., 2, 990–998.

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen, J. T., Bjerring, M., Jeppesen, M. D., Pedersen, R. O., Pedersen, J. M., Hein, K. L., Vosegaard, T., Skrydstrup, T., Otzen, D. E., and Nielsen, N. C. (2009) Unique identification of supramolecular structures in amyloid fibrils by solid state NMR spectroscopy, Angew. Chem. Int. Ed. Engl., 48, 2118–2121.

    Article  CAS  PubMed  Google Scholar 

  13. Van Melckebeke, H., Wasmer, C., Lange, A., Eiso, A. B., Loquet, A., Bockmann, A., and Meier, B. H. (2010) Atomic-resolution three-dimensional structure of Hets(218–289) amyloid fibrils by solid state NMR spectroscopy, J. Am. Chem. Soc., 132, 13765–13775.

    Article  PubMed  CAS  Google Scholar 

  14. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol., 273, 729–739.

    Article  CAS  PubMed  Google Scholar 

  15. Fitzpatrick, A. W., Debelouchina, G. T., Bayro, M. J., Clare, D. K., Caporini, M. A., Bajaj, V. S., Jaroniec, C. P., Wang, L., Ladizhansky, V., Muller, S. A., MacPhee, C. E., Waudby, C. A., Mott, H. R., De Simone, A., Knowles, T. P., Saibil, H. R., Vendruscolo, M., Orlova, E. V., Griffin, R. G., and Dobson, C. M. (2013) Atomic structure and hierarchical assembly of a cross-ß amyloid fibril, Proc. Natl. Acad. Sci. USA, 110, 5468–5473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bennhold, H. (1922) Specific staining of amyloid by Congo Red, Muench. Medizin. Wochensch., 69, 1537–1538 (German).

    Google Scholar 

  17. Steensma, D. P. (2001) Congo Red, Arch. Path. Lab. Med., 125, 250–252.

    CAS  PubMed  Google Scholar 

  18. Divry, P., and Florkin, M. (1927) Sur les prcprietes optiques de l’amyloide, Compt. rend. Soc. Biol., 97, 1808–1810 (French).

    Google Scholar 

  19. Eanes, E. D., and Glenner, G. G. (1968) X-Ray diffraction studies on amyloid filaments, J. Histochem. Cytochem., 16, 673–677.

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, R. K., McKinley, M. P., Bowman, K. A., Braunfeld, M. B., Barry, R. A., and Prusiner, S. B. (1986) Separation and properties of cellular and scrapie prion proteins, Proc. Natl. Acad. Sci. USA, 83, 2310–2314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) Yeast [PSI +] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J. Biol. Chem., 278, 49636–49643.

    Article  CAS  PubMed  Google Scholar 

  22. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vassar, P. S., and Culling, C. F. (1959) Fluorescent stains, with special reference to amyloid and connective tissues, Arch. Pathol., 68, 487–498.

    CAS  PubMed  Google Scholar 

  24. Hobbs, J. R., and Morgan, A. D. (1963) Fluorescence microscopy with thioflavin-T in the diagnosis of amyloid, J. Pathol. Bacteriol., 86, 437–442.

    Article  CAS  PubMed  Google Scholar 

  25. Naiki, H., Higuchi, K., Hosokawa, M., and Takeda, T. (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye thioflavin T1, Anal. Biochem., 177, 244–249.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz, P. (1967) New patho-anatomic observations on amyloidosis in the aged. Fluorescence microscopic observations, in Proc. Symp. on Amyloidosis (Mandema, E., Ruinen, L., Scholten, J. H., and Cohen, A. S., eds.) Excerpta Medica, Amsterdam, pp. 400–417.

    Google Scholar 

  27. Kyle, R. (2001) Amyloidosis: a convoluted story, Br. J. Haematol., 114, 529–538.

    Article  CAS  PubMed  Google Scholar 

  28. Fonteyn, N. (1639) Responsionum et Curationum Medicinalium, Amstelodami, Amsterdam.

  29. Bartholin, T. (1641) Historiarum Anatomicarum Rariorum, Apud Johannem Henrici, Amsterdam.

  30. Rokitansky, C. (1842) Handbuch der Speciellen Pathologischen Anatomica, Braumuller und Seidel, Vienna.

    Google Scholar 

  31. Schneider, K., Fangerau, H., Michaelsen, B., and Raab, W. H.-M. (2008) The early history of the transmissible spongiform encephalopathies exemplified by scrapie, Brain Res. Bull., 77, 343–355.

    Article  PubMed  Google Scholar 

  32. Comber, T. (1772) Real Improvements in Agriculture, London.

  33. Gajdusek, D. C. (1967) Slow-virus infections of the nervous system, New Engl. J. Med., 276, 392–400.

    Article  CAS  PubMed  Google Scholar 

  34. Brown, D. R. (ed.) (2005) Neurodegeneration and Prion Disease, Springer, New York.

    Book  Google Scholar 

  35. Wickner, R. B. (2005) Scrapie in ancient China? Science, 309, 874.

    Article  CAS  PubMed  Google Scholar 

  36. Li, P., and Xing, H. (2006) Disease but no sheep, Science, 311, 1867.

    Article  CAS  PubMed  Google Scholar 

  37. Zigas, V., and Gajdusek, D. C. (1959) Kuru: clinical, pathological and epidemiological study of a recently discovered acute progressive degenerative disease of the central nervous system reaching epidemic proportions among natives of the Eastern Highlands of New Guinea, PNG Med. J., 3, 1–31.

    Google Scholar 

  38. Kelly, J. J., ffixJr. (1987) Amyloidosis, in Polyneuropathies Associated with Plasma Cell Dyscrasias (Kelly, J. J., ffixJr., Kyle, R. A., and Latov, N., eds.), Topics in the Neurosciences, Vol. 5, pp. 105–127.

    Article  Google Scholar 

  39. Virchow, R. (1854) Ueber eine im Gehirn und Ruckenmark des Menschen aufgefunde Substanz mit der chemishen Reaction der Cellulose, Virchows Arch. Path. Anat., 6, 135–138.

    Article  Google Scholar 

  40. Colin, J. J., and de Claubry, H. F. (1914) Sur les combinaisons de l’iode avec les substances vegetales et animals, Ann. Chimie, 90, 87–100.

    Google Scholar 

  41. Tanskanen, M. (2013) “Amyloid” — Historical Aspects, InTech, Rijeka.

    Book  Google Scholar 

  42. Niewold, T. A., Flores Landeira, J. M., van den Heuvel, L. P., Ultee, A., Tooten, P. C., and Veerkamp, J. H. (1991) Characterization of proteoglycans and glycosaminoglycans in bovine renal AA-type amyloidosis, Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol., 60, 321–328.

    Article  CAS  PubMed  Google Scholar 

  43. Snow, A. D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimata, K., Mizutani, A., Arai, M., Schreier, W. A., and Morgan, D. G. (1994) An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain, Neuron, 12, 219–234.

    Article  CAS  PubMed  Google Scholar 

  44. Snow, A. D., Willmer, J., and Kisilevsky, R. (1987) Sulfated glycosaminoglycans: a common constituent of all amyloids? Lab. Invest., 56, 120–123.

    CAS  PubMed  Google Scholar 

  45. Putchler, H., Sweat, F., and Levine, M. (1962) On the binding of Congo Red by amyloid, J. Histochem. Cytochem., 10, 355–364.

    Article  Google Scholar 

  46. Putchler, H., and Sweat, F. (1965) Congo Red as a stain for fluorescence microscopy of amyloid, J. Histochem. Cytochem., 13, 693.

    Article  Google Scholar 

  47. Linke, K. (2000) Highly sensitive diagnosis of amyloid and various amyloid syndromes using Congo Red fluorescence, Virchows Arch., 436, 439–448.

    Article  CAS  PubMed  Google Scholar 

  48. Kitamoto, T., Tateishi, J., Hikita, K., Nagara, H., and Takeshita, I. (1985) A new method to classify amyloid fibril proteins, Acta Neuropathol., 67, 272–278.

    Article  CAS  PubMed  Google Scholar 

  49. Wright, J. R., Calkins, E., and Humphrey, R. L. (1977) Potassium permanganate reaction in amyloidosis, Lab. Invest., 36, 274–281.

    CAS  PubMed  Google Scholar 

  50. Tashima, T., Kitamoto, T., and Tateishi, J. (1986) Histochemical classification of systemic amyloid fibril proteins: alkaline guanidine method, Arch. Pathol. Lab., 110, 885–888.

    CAS  Google Scholar 

  51. Carnes, W. H., and Forker, B. R. (1956) Metachromasia of amyloid; a spectrophotometric study with particular reference to the dye–chromotrope bond, Lab. Invest., 5, 21–43.

    CAS  PubMed  Google Scholar 

  52. Elghetany, M. T., and Saleem, A. (1988) Methods for staining amyloid in tissues: a review, Stain Technol., 63, 201–212.

    Article  CAS  PubMed  Google Scholar 

  53. LeVine, H., 3rd. (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T, Methods Enzymol., 309, 274–284.

    Article  CAS  PubMed  Google Scholar 

  54. Klunk, W. E., Pettegrew, J. W., and Abraham, D. J. (1989) Quantitative evaluation of Congo Red binding to amyloidlike proteins with a beta-pleated sheet conformation, J. Histochem. Cytochem., 37, 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  55. LeVine, H., 3rd. (1993) Thioflavin-T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution, Protein Sci., 2, 404–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Cloe, A. L., Orgel, J. P. R. O., Sachleben, J. R., Tycko, R., and Meredith, S. C. (2011) The Japanese mutant Aß (?E22-Aß1–39) forms fibrils instantaneously, with lowthioflavin T fluorescence: seeding of wild-type Aß1–40 into atypical fibrils by ?E22-Aß1–39, Biochemistry, 50, 2026–2039.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Linke, R. P. (2102) On typing amyloidosis using immunohistochemistry. Detailed illustrations, review and a note on mass spectrometry, Progr. Histochem. Cytochem., 47, 61–132.

  58. Greiner, E. R., Kelly, J. W., and Palhano, F. L. (2014) Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils, PLoS One, 9, e105433.

    Article  CAS  Google Scholar 

  59. Mitkevich, O. V., Kochneva-Pervukhova, N. V., Surina, E. R., Benevolensky, S. V., Kushnirov, V. V., and TerAvanesyan, M. D. (2012) DNA aptamers detecting generic amyloid epitopes, Prion, 6, 400–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chang, W. M., Dakanali, M., Capule, C. C., Sigurdson, C. J., Yang, J., and Theodorakis, E. A. (2011) ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue, ACS Chem. Neurosci., 2, 249–255.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Schmued, L., Raymick, J., Tolleson, W., Sarkar, S., Zhang, Y. H., and Bell-Cohn, A. (2012) Introducing Amylo-Glo, a novel fluorescent amyloid specific histochemical tracer especially suited for multiple labeling and large scale quantification studies, J. Neurosci. Methods, 209, 120–126.

    Article  CAS  PubMed  Google Scholar 

  62. Sethi, S., Vrana, J. A., Theis, J. D., Leung, N., Sethi, A., Nasr, S. H., Fervenza, F. C., Cornell, L. D., Fidler, M. E., and Dogan, A. (2012) Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis, Kidney Int., 82, 226–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Cohen, A. S., and Calkins, E. (1959) Electron microscopic observation on a fibrous component in amyloid of diverse origins, Nature, 183, 1202–1203.

    Article  CAS  PubMed  Google Scholar 

  64. Cohen, A. S., Shirahama, T., and Skinner, M. (1982) Electron microscopy of amyloid, in Electron Microscopy of Proteins (Harris, J. R., ed.) Academic Press, New York.

    Google Scholar 

  65. Shirahama, T., and Cohen, A. S. (1967) High-resolution electron microscopic analysis of the amyloid fibril, J. Cell Biol., 33, 679–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Pras, M., Schubert, M., Zucker-Franklin, D., Rimon, A., and Franklin, E. C. (1968) The characterization of soluble amyloid prepared in water, J. Clin. Invest., 47, 924–933.

    Article  CAS  PubMed  Google Scholar 

  67. Bonar, L., Cohen, A. S., and Skinner, M. M. (1969) Characterization of the amyloid fibril as a cross-beta protein, Proc. Soc. Exp. Biol. Med., 131, 1373–1375.

    Article  CAS  PubMed  Google Scholar 

  68. Glenner, G. G., Eanes, E. D., Bladen, H. A., Linke, R. P., and Termine, J. D. (1974) Beta-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils, J. Histochem. Cytochem., 22, 1141–1158.

    Article  CAS  PubMed  Google Scholar 

  69. Sunde, M., and Blake, C. C. F. (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation, Q. Rev. Biophys., 31, 1–39.

    Article  CAS  PubMed  Google Scholar 

  70. Jimenez, J. L., Nettleton, E. J., and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils, PNAS, 99, 9196–9201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Goldsbury, C., Goldie, K., Pellaud, J., Seelig, J., Frey, P., Muller, S. A., Kistler, J., Cooper, G. J., and Aebi, U. (2000) Amyloid fibril formation from full-length and fragments of amylin, J. Struct. Biol., 130, 352–362.

    Article  CAS  PubMed  Google Scholar 

  72. Goldsbury, C. S., Wirtz, S., Muller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. (2000) Studies on the in vitro assembly of Aß1–40: implications for the search for Aß fibril formation inhibitors, J. Struct. Biol., 130, 217–231.

    Article  CAS  PubMed  Google Scholar 

  73. Mizuno, N., Baxa, U., and Steven, A. C. (2011) Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy, PNAS, 108, 3252–3257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Benzinger, T. L. S., Gregory, D. M., Burkoth, T. S., Miller Auer, H., Lynn, D. G., Botto, R. E., and Meredith, S. C. (1998) Propagating structure of Alzheimer’s ß-amyloid(10–35) is parallel ß-sheet with residues in exact register, PNAS, 95, 13407–13412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Petkova, A. T., Yau, W. M., and Tycko, R. (2006) Experimental constraints on quaternary structure in Alzheimer’s ß-amyloid fibrils, Biochemistry, 45, 498–512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Paravastu, A. K., Leapman, R. D., Yau, W. M., and Tycko, R. (2008) Molecular structural basis for polymorphism in Alzheimer’s ß-amyloid fibrils, PNAS, 105, 18349–18354.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Smaoui, M. R., Poitevin, F., Delarue, M., Koehl, P., Orland, H., and Waldispuhl, J. (2013) Computational assembly of polymorphic amyloid fibrils reveals stable aggregates, Biophys. J., 104, 683–693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Inoue, S., Kuroiwa, M., Saraiva, M. J., Guimaraes, A., and Kisilevsky, R. (1998) Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy, J. Struct. Biol., 124, 1–12.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen, A. S., and Calkins, E. (1964) The isolation of amyloid fibrils and a study of the effect of collagenase and hyaluronidase, J. Cell. Biol., 21, 481–486.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Glenner, G. G., Terry, W., Harada, M., Isersky, C., and Page, D. (1971) Amyloid fibrils proteins: proof of homology with immunoglobulin light chains by sequence analysis, Science, 172, 1150–1153.

    Article  CAS  PubMed  Google Scholar 

  81. Benditt, E. P., Eriksen, N., Hermodson, M. A., and Ericsson, L. H. (1971) The major proteins of human and monkey amyloid substance: common properties including unusual N-terminal amino acid sequences, FEBS Lett., 19, 169–173.

    Article  CAS  PubMed  Google Scholar 

  82. Benditt, E. P. (1976) The structure of amyloid protein AA and evidence for a transmissible factor in the origin of amyloidosis, in Amyloidosis (Wegelius, O., and Pasternack, A., eds.) Academic Press, London, pp. 323–337.

    Google Scholar 

  83. Costa, P. P., Figueira, A. S., and Bravo, F. R. (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy, PNAS, 75, 4499–4503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Skinner, M., and Cohen, A. S. (1981) The prealbumin nature of the amyloid protein in familial amyloid polyneuropathy (FAP), Biochem. Biophys. Res. Commun., 99, 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  85. Selkoe, D. J., Ihara, Y., and Salazar, F. J. (1982) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea, Science, 215, 1243–1245.

    Article  CAS  PubMed  Google Scholar 

  86. Selkoe, D. J., Abraham, C. R., Podlisny, M. B., and Duffy, L. K. (1986) Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease, J. Neurochem., 46, 1820–1834.

    Article  CAS  PubMed  Google Scholar 

  87. Selkoe, D. J., lhara, Y., Abraham, C., Rasool, C. G., and McCluskey, A. H. (1983) Biochemical and immunocytochemical studies of Alzheimer paired helical filaments, in Banbury: Report 15: Biological Aspects of Alzheimer’s Disease (Katzman, R., ed.) Cold Spring Harbor, New York, pp. 125–134.

    Google Scholar 

  88. Yen, S.-H., and Kress, Y. (1983) The effect of chemical reagents or proteases on the ultrastructure of paired helical filaments, in Banbury: Report 15: Biological Aspects of Alzheimer’s Disease (Katzman, R., ed.) Cold Spring Harbor, New York, pp. 155–165.

    Google Scholar 

  89. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion, Science, 218, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  90. Bagriantsev, S. N., Kushnirov, V. V., and Liebman, S. W. (2006) Analysis of amyloid aggregates using agarose gel electrophoresis, Methods Enzymol., 412, 33–48.

    Article  CAS  PubMed  Google Scholar 

  91. Nevzglyadova, O. V., Artemov, A. V., Mittenberg, A. G., Solovyov, K. V., Kostyleva, E. I., Mikhailova, E. V., Kuznetsova, I. M., Turoverov, K. K., and Soidla, T. R. (2009) Prion-associated proteins in yeast: comparative analysis of isogenic [PSI(+)] and [psi(–)] strains, Yeast, 26, 611–631.

    Article  CAS  PubMed  Google Scholar 

  92. Michelitsch, M. D., and Weissman, J. S. (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions, PNAS, 97, 11910–11915.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Harrison, P. M., and Gerstein, M. (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes, Genome Biol., 4, R40.

  94. Antonets, K. S., and Nizhnikov, A. A. (2013) A novel algorithm to assess compositional biases in protein sequences, Evol. Bioinform., 9, 263–273.

    Google Scholar 

  95. Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinform., 8, 65.

    Article  CAS  Google Scholar 

  96. Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W., and Rousseau, F. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring templates, Nat. Methods, 7, 237–242.

    Article  CAS  PubMed  Google Scholar 

  97. Tsolis, A. C., Papandreou, N. C., Iconomidou, V. A., and Hamodrakas, S. J. (2013) A consensus method for the prediction of “aggregation-prone” peptides in globular proteins, PLoS One, 8, e54175.

    Article  CAS  Google Scholar 

  98. Kryndushkin, D., Pripuzova, N., Burnett, B. G., and Shewmaker, F. (2013) Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells, J. Biol Chem., 288, 27100–27111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Nizhnikov, A. A., Alexandrov, A. I., Ryzhova, T. A., Mitkevich, O. V., Dergalev, A. A., Ter-Avanesyan, M. D., and Galkin, A. P. (2014) Proteomic screening for amyloid proteins, PLoS One, 9, e116003.

    Article  CAS  Google Scholar 

  100. Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods, 39, 50–55.

    Article  CAS  PubMed  Google Scholar 

  101. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science, 277, 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  102. Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A., Kondo, J., Ihara, Y., and Saitoh, T. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease, PNAS, 90, 11282–11286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., and Wisniewski, H. M. (1986) Microtubuleassociated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem., 261, 6084–6089.

    CAS  PubMed  Google Scholar 

  104. Meetoo, D., McGovern, P., and Safadi, R. (2007) An epidemiological overview of diabetes across the world, Br. J. Nurs., 16, 1002–1007.

    Article  PubMed  Google Scholar 

  105. Brookmeyer, R., Evans, D. A., Hebert, L., Langa, K. M., Heeringa, S. G., Plassman, B. L., and Kukull, W. A. (2011) National estimates of the prevalence of Alzheimer’s disease in the United States, Alzheimers Dement., 7, 61–73.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Iconomidou, V. A., Vriend, G., and Hamodrakas, S. J. (2000) Amyloids protect the silkmoth oocyte and embryo, FEBS Lett., 479, 141–145.

    Article  CAS  PubMed  Google Scholar 

  107. Fowler, D. M., Koulov, A. V., Alory-Jost, C., Marks, M. S., Balch, W. E., and Kelly, J. W. (2006) Functional amyloid formation within mammalian tissue, PLoS Biol., 4, e6.

    Article  CAS  Google Scholar 

  108. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, 325, 328–332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Chimileski, S., Franklin, M. J., and Papke, R. T. (2014) Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer, BMC Biol., 12, 65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Coustou, V., Deleu, C., Saupe, S., and Begueret, J. (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog, PNAS, 94, 9773–9778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B., and Saupe, S. J. (2002) Amyloid aggregates of the HET-s prion protein are infectious, PNAS, 99, 7402–7407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Wickner, R. B. (1994) [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  113. Wickner, R., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions, Yeast, 11, 1671–1685.

    Article  CAS  PubMed  Google Scholar 

  114. Inge-Vechtomov, S. G. (2000) Yeast prions and the Central dogma of molecular biology, Vestnik Ross. Akad. Nauk, 70, 195–202.

    Google Scholar 

  115. Inge-Vechtomov, S. G. (2003) Template principle in biology (the past, present, future?) Ekol. Genet., 1, 6–15.

    Google Scholar 

  116. Koltsov, N. K. (1936) Hereditary molecules, in Organization of the Cell [in Russian], Gos. Izdat. Biol. Med. Lit., pp. 585–620.

    Google Scholar 

  117. Crick, F. H. C. (1958) On protein synthesis, Symp. Soc. Exptl. Biol., 12, 138–163.

    CAS  Google Scholar 

  118. Crick, F. H. C. (1970) Central dogma of molecular biology, Nature, 227, 561–563.

    Article  CAS  PubMed  Google Scholar 

  119. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and TerAvanesyan, M. D. (1997) In vitro propagation of the prionlike state of yeast Sup35 protein, Science, 277, 381–383.

    Article  CAS  PubMed  Google Scholar 

  120. Sparrer, H. E., Santoso, A., Szoka, F. C., and Weissman, J. S. (2000) Evidence for the prion hypothesis: induction of the yeast [PSI +] factor by in vitro-converted Sup35 protein, Science, 289, 595–599.

    Article  CAS  PubMed  Google Scholar 

  121. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences, Nature, 428, 323–328.

    Article  CAS  PubMed  Google Scholar 

  122. Fink, G. (2005) A transformation principle, Cell, 120, 153–154.

    Article  CAS  PubMed  Google Scholar 

  123. Inge-Vechtomov, S. G. (2013) The template principle: paradigm of modern genetics, Russ. J. Genet., 49, 4–9.

    Article  CAS  Google Scholar 

  124. Inge-Vechtomov, S. G. (2015) From chromosome theory to the template principle, Russ. J. Genet., 51, 323–333.

    Article  CAS  Google Scholar 

  125. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge Vechtomov, S. G., and Liebman, S. W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI +], Science, 268, 880–884.

    Article  CAS  PubMed  Google Scholar 

  126. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and TerAvanesyan, M. D. (1996) Propagation of the yeast prionlike [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor, EMBO J., 15, 3127–3134.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Kushnirov, V. V., and Ter-Avanesyan, M. D. (1998) Structure and replication of yeast prions, Cell, 94, 13–16.

    Article  CAS  PubMed  Google Scholar 

  128. Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041–1072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Krishnan, R., and Lindquist, S. (2005) Structural insights into yeast prion illuminate nucleation and strain diversity, Nature, 435, 765–772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Tanaka, M., Collins, S. R., Tayama, B. H., and Weissman, J. S. (2006) The physical basis of how prion conformation determine strain phenotypes, Nature, 442, 585–589.

    Article  CAS  PubMed  Google Scholar 

  131. Foo, C. K., Ohhashi, Y., Kelly, M. J. S., Tanaka, M., and Weissman, J. S. (2011) Radically different amyloid conformation dictate the seeding specificity of a chimeric Sup35 prion, J. Mol. Biol., 408, 1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Raychaudhuri, R., Lomakin, A., Bernstein, S., Zheng, X., Condron, M. M., Benedek, G. B., Bowers, M., and Teplow, D. B. (2014) Gly25-Ser26 amyloid ß-protein structural isomorphs produce distinct Aß42 conformational dynamics and assembly characteristics, J. Mol. Biol., 426, 2422–2441.

    Article  CAS  Google Scholar 

  133. Hoefgen, S., Dahms, S., Oertwig, K., and Than, M. (2015) The amyloid precursor protein shows a pHdependent conformational switch in its E1 domain, J. Mol. Biol., 427, 433–442.

    Article  CAS  PubMed  Google Scholar 

  134. Satput-Krishnan, P., and Serio, T. R. (2005) Prion protein remodeling confers an immediate phenotypic switch, Nature, 437, 262–265.

    Article  CAS  Google Scholar 

  135. Derkatch, I. L., Bradley, M. E., Masse, S., Zadorsky, S. P., Polozkov, G. V., Inge-Vechtomov, S. G., and Liebman, S. W. (2000) Dependence and independence of [PSI +] and [PIN +]: a two prion system in yeast? EMBO J., 19, 1942–1952.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions. The story of [PIN +], Cell, 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  137. Sarell, C. J., Stockley, P. G., and Radford, S. E. (2013) Assessing the causes and consequences of co-polymerization in amyloid formation, Prion, 7, 359–368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. De Baets, G., Van Dare, J., Rousseau, F., and Schymkowitz, J. (2014) A genome-wide sequence-structure analysis suggests aggregation gate-keepers constitution evolutionary constrained functional class, J. Mol. Biol., 426, 2405–2412.

    Article  PubMed  CAS  Google Scholar 

  139. Dobson, C. M. (2013) The amyloid phenomenon and its significance, in Amyloid Fibrils and Prefibrillar Aggregates: Molecular and Biological Properties (Otzen, D., ed.) WileyVCH.

    Google Scholar 

  140. Schnabel, J. (2010) Protein folding: the dark side of proteins, Nature, 464, 828–829.

    Article  CAS  PubMed  Google Scholar 

  141. Borkhsenius, A. S., Sasnauskas, K., Gedvilaite, A., and Inge-Vechtomov, S. G. (2002) Chimeric yeast prions with unstable inheritance, Genetika, 38, 300–305.

    CAS  PubMed  Google Scholar 

  142. Pogoda, A. A., Alenin, V. V., Borkhsenius, A. S., Zadorsky, S. P., Manukhov, V. V., and Inge-Vechtomov, S. G. (2010) [PIN +]-dependent induction of protease-resistant amyloids by Ade2p proteins fused with prionizing NM domain of Sup35 protein of yeast Saccharomyces cerevisiae, Dokl. Biochem. Biophys., 433, 183–186.

    Article  CAS  PubMed  Google Scholar 

  143. Rick, R. (2006) Infectious Alzheimer disease, Nature, 444, 429–430.

    Article  CAS  Google Scholar 

  144. Ricciarelly, R., d’Abramo, C., Massone, S., Marinardi, U. M., Pronzato, M. A., and Tabaton, M. (2004) Microarray analysis in Alzheimer’s disease and normal aging, IUBMB Life, 56, 349–354.

    Article  CAS  Google Scholar 

  145. Granic, A., Padmanabham, J., Norden, M., and Potter, H. (2010) Alzheimer Aß peptide induces chromosome missegregation and aneuploidy, including trisomy 21: requirement for tau and APP, Mol. Biol. Cell, 21, 511–520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Westermark, P. (1975) Amyloid of medullary carcinoma of the thyroid: partial characterization, Upsala J. Med. Sci., 80, 88–92.

    Article  CAS  PubMed  Google Scholar 

  147. Sletten, K., Westermark, P., and Natvig, J. B. (1976) Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid, J. Exp. Med., 143, 993–998.

    Article  CAS  PubMed  Google Scholar 

  148. Cohen, D. H., Feiner, H., Jensson, O., and Frangione, B. (1983) Amyloid fibril in hereditary cerebral hemorrhage with amyloidosis (HCHWA) is related to the gastroenteropancreatic neuroendocrine protein, gamma trace, J. Exp. Med., 158, 623–628.

    Article  CAS  PubMed  Google Scholar 

  149. Gejyo, F., Yamada, T., Odani, S., Nakagawa, Y., Arakawa, M., Kunitomo, T., Kataoka, H., Suzuki, M., Hirasawa, Y., Shirahama, T., Cohen, A. S., and Schmidt, K. (1985) A new form of amyloid protein associated with chronic hemodialysis was identified as 2-microglobulin, Biochem. Biophys. Res. Commun., 129, 701–706.

    Article  CAS  PubMed  Google Scholar 

  150. Westermark, P., Wernstedt, C., Wilander, E., and Sletten, K. (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas, Biochem. Biophys. Res. Commun., 140, 827–831.

    Article  CAS  PubMed  Google Scholar 

  151. Johansson, B., Wernstedt, C., and Westermark, P. (1987) Atrial natriuretic peptide deposited as atrial amyloid fibrils, Biochem. Biophys. Res. Commun., 148, 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  152. Nichols, W. C., Dwulet, F. E., Liepnieks, J., and Benson, M. D. (1988) Variant apolipoprotein AI as a major constituent of a human hereditary amyloid, Biochem. Biophys. Res. Commun., 156, 762–768.

    Article  CAS  PubMed  Google Scholar 

  153. Dische, F. E., Wernstedt, C., Westermark, G. T., Westermark, P., Pepys, M. B., Rennie, J. A., Gilbey, S. G., and Watkins, P. J. (1988) Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient, Diabetologia, 31, 158–161.

    Article  CAS  PubMed  Google Scholar 

  154. Maury, C. P., and Baumann, M. (1990) Isolation and characterization of cardiac amyloid in familial amyloid polyneuropathy type IV (Finnish): relation of the amyloid protein to variant gelsolin, Biochim. Biophys. Acta, 1096, 84–86.

    Article  CAS  PubMed  Google Scholar 

  155. Eulitz, M., Weiss, D. T., and Solomon, A. (1990) Immunoglobulin heavy-chain-associated amyloidosis, PNAS, 87, 6542–6546.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Benson, M. D., Liepnieks, J., Uemichi, T., Wheeler, G., and Correa, R. (1993) Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain, Nature Genet., 3, 252–256.

    Article  CAS  PubMed  Google Scholar 

  157. Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C., Terry, C. J., Feest, T. G., Zalin, A. M., and Hsuan, J. J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis, Nature, 362, 553–557.

    Article  CAS  PubMed  Google Scholar 

  158. Westermark, P., Eriksson, L., Engstrom, U., Enestrom, S., and Sletten, K. (1997) Prolactin-derived amyloid in the aging pituitary gland, Am. J. Pathol., 150, 67–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Vidal, R., Frangione, B., Rostagno, A., Mead, S., Revesz, T., Plant, G., and Ghiso, J. (1999) A stop-codon mutation in the BRI gene associated with familial British dementia, Nature, 399, 776–781.

    Article  CAS  PubMed  Google Scholar 

  160. Niewold, T. A., Murphy, C. L., Hulskamp-Koch, C. A., Tooten, P. C., and Gruys, E. (1999) Casein-related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea, Amyloid, 6, 244–249.

    Article  CAS  PubMed  Google Scholar 

  161. Haggqvist, B., Naslund, J., Sletten, K., Westermark, G., Mucchiano, G., Tjernberg, L., Nordstedt, C., Engstrom, U., and Westermark, P. (1999) Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid, PNAS, 96, 8669–8674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Vidal, R., Revesz, T., Rostagno, A., Kim, E., Holton, J. L., Bek, T., Bojsen-M?ller, M., Braendgaard, H., Plant, G., Ghiso, J., and Frangione, B. (2000) A decamer duplication in the 3' region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred, PNAS, 97, 4920–4925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Korvatska, E., Henry, H., Mashima, Y., Yamada, M., Bachmann, C., Munier, F. L., and Schorderet, D. F. (2000) Amyloid and non-amyloid forms of 5q31-linked corneal dystrophy resulting from kerato-epithelin mutations at Arg124 are associated with abnormal turnover of the protein, J. Biol. Chem., 275, 11465–11469.

    Article  CAS  PubMed  Google Scholar 

  164. Benson, M. D., Liepnieks, J. J., Yazaki, M., Yamashita, T., Hamidi Asl, K., Guenther, B., and Kluve-Beckerman, B. (2001) A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene, Genomics, 72, 272–277.

    Article  CAS  PubMed  Google Scholar 

  165. Ando, Y., Nakamura, M., Kai, H., Katsuragi, S., Terazaki, H., Nozawa, T., Okuda, T., Misumi, S., Matsunaga, N., Hata, K., Tajiri, T., Shoji, S., Yamashita, T., Haraoka, K., Obayashi, K., Matsumoto, K., Ando, M., and Uchino, M. (2002) A novel localized amyloidosis associated with lactoferrin in the cornea, Lab. Invest., 82, 757–766.

    Article  CAS  PubMed  Google Scholar 

  166. Solomon, A., Murphy, C. L., Weaver, K., Weiss, D. T., Hrncic, R., Eulitz, M., Donnell, R. L., Sletten, K., Westermark, G., and Westermark, P. (2003) Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein, J. Lab. Clin. Med., 142, 348–355.

    Article  CAS  PubMed  Google Scholar 

  167. Bergstrom, J., Murphy, C. L., Weiss, D. T., Solomon, A., Sletten, K., Hellman, U., and Westermark, P. (2004) Two different types of amyloid deposits — apolipoprotein A-IV and transthyretin — in a patient with systemic amyloidosis, Lab. Invest., 84, 981–988.

    Article  PubMed  CAS  Google Scholar 

  168. Linke, R. P., Joswig, R., Murphy, C. L., Wang, S., Zhou, H., Gross, U., Rocken, C., Westermark, P., Weiss, D. T., and Solomon, J. (2005) Senile seminal vesicle amyloid is derived from semenogelin I, Lab. Clin. Med., 145, 187–193.

    Article  CAS  Google Scholar 

  169. Benson, M. D., James, S., Scott, K., Liepnieks, J. J., and Kluve-Beckerman, B. (2008) Leukocyte chemotactic factor 2: a novel renal amyloid protein, Kidney Int., 74, 218–222.

    Article  CAS  PubMed  Google Scholar 

  170. Murphy, C. L., Kestler, D. P., Foster, J. S., Wang, S., Macy, S. D., Kennel, S. J., Carlson, E. R., Hudson, J., Weiss, D. T., and Solomon, A. (2008) Odontogenic ameloblast-associated protein nature of the amyloid found in calcifying epithelial odontogenic tumors and unerupted tooth follicles, Amyloid, 15, 89–95.

    Article  PubMed  Google Scholar 

  171. Caubet, C., Bousset, L., Clemmensen, O., Sourigues, Y., Bygum, A., Chavanas, S., Coudane, F., Hsu, C. Y., Betz, R. C., Melki, R., Simon, M., and Serre, G. (2010) A new amyloidosis caused by fibrillar aggregates of mutated corneodesmosin, FASEB J., 24, 3416–3426.

    Article  CAS  PubMed  Google Scholar 

  172. Willander, H., Askarieh, G., Landreh, M., Westermark, P., Nordling, K., Keranen, H., Hermansson, E., Hamvas, A., Nogee, L. M., Bergman, T., Saenz, A., Casals, C., Aqvist, J., Jornvall, H., Berglund, H., Presto, J., Knight, S. D., and Johansson, J. (2012) High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C, PNAS, 109, 2325–2329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Gharibyan, A. L., Raveh, D., and Morozova-Roche, L. A. M. (2012) S100A8/A9 amyloidosis in the ageing prostate: relating ex vivo and in vitro studies, Mol. Biol., 849, 387–401.

    CAS  Google Scholar 

  174. Munch, J., Rucker, E., Standker, L., Adermann, K., Goffinet, C., Schindler, M., Wildum, S., Chinnadurai, R., Rajan, D., Specht, A., Gimenez-Gallego, G., Sanchez, P. C., Fowler, D. M., Koulov, A., Kelly, J. W., Mothes, W., Grivel, J. C., Margolis, L., Keppler, O. T., Forssmann, W. G., and Kirchhoff, F. (2007) Semen-derived amyloid fibrils drastically enhance HIV infection, Cell, 131, 1059–1071.

    Article  PubMed  CAS  Google Scholar 

  175. De Vocht, M. L., Reviakine, I., Wosten, H. A., Brisson, A., Wessels, J. G., and Robillard, G. T. (2000) Structural and functional role of the disulfide bridges in the hydrophobin SC3, J. Biol. Chem., 275, 28428–28432.

    Article  PubMed  Google Scholar 

  176. Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation, Science, 295, 851–855.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Si, K., Giustetto, M., Etkin, A., Hsu, R., Janisiewicz, A. M., Miniaci, M. C., Kim, J. H., Zhu, H., and Kandel, E. R. (2003) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia, Cell, 115, 893–904.

    Article  CAS  PubMed  Google Scholar 

  178. Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F. G. H., Dijkhuizen, L., and Wosten, H. A. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils, Genes Dev., 17, 1714–1726.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Bieler, S., Estrada, L., Lagos, R., Baeza, M., Castilla, J., and Soto, C. (2005) Amyloid formation modulates the biological activity of a bacterial protein, J. Biol. Chem., 280, 26880–26885.

    Article  CAS  PubMed  Google Scholar 

  180. Oh, J., Kim, J.-G., Jeon, E., Yoo, C.-H., Moon, J. S., Rhee, S., and Hwang, I. (2007) Amyloidogenesis of type III-dependent hairpins from plant pathogenic bacteria, J. Biol. Chem., 282, 13601–13609.

    Article  CAS  PubMed  Google Scholar 

  181. Alteri, C. J., Xicohtencatl-Cortes, J., Hess, S., Caballero Olin, G., Giron, J. A., and Friedman, R. L. (2007) Mycobacterium tuberculosis produces pili during human infection, PNAS, 104, 5145–5150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Wang, R., Braughton, K. R., Kretschmer, D., Bach, T.-H. L., Queck, S. Y., Li, M., Kennedy, A. D., Dorward, D. W., Klebanoff, S. J., Peschel, A., DeLeo, F. R., and Otto, M. (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA, Nat. Med., 13, 1510–1514.

    Article  CAS  PubMed  Google Scholar 

  183. Dueholm, M. S., Petersen, S. V., Sonderkaer, M., Larsen, P., Christiansen, G., Hein, K. L., Enghild, J. J., Nielsen, J. L., Nielsen, K. L., Nielsen, P. H., and Otzen, D. E. (2010) Functional amyloid in Pseudomonas, Mol. Microbiol., 77, 1009–1020.

    CAS  PubMed  Google Scholar 

  184. Romero, D., Aguilar, C., Losick, R., and Kolter, R. (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms, PNAS, 107, 2230–2234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Majumdar, A., Cesario, W. C., White-Grindley, E., Jiang, H., Ren, F., Khan, M. R., Li, L., Choi, E. M., Kannan, K., Guo, F., Unruh, J., Slaughter, B., and Si, K. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory, Cell, 148, 515–529.

    Article  CAS  PubMed  Google Scholar 

  186. Bavdek, A., Kostanjsek, R., Antonini, V., Lakey, J. H., Dalla Serra, M., Gilbert, R. J. C., and Anderluh, G. (2012) pH dependence of listeriolysin O aggregation and pore-forming ability, FEBS J., 279, 126–141.

    Article  CAS  PubMed  Google Scholar 

  187. Gossler-Schofberger, R., Hesser, G., Reif, M. M., Friedmann, J., Duscher, B., Toca-Herrera, J. L., Oostenbrink, C., and Jilek, A. (2012) A stereochemical switch in the aDrs model system, a candidate for a functional amyloid, Arch. Biochem. Biophys., 522, 100–106.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  188. Li, J., Mc Quade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K., and Wu, H. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, 150, 339–350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Guyonnet, B., Egge, N., and Cornwall, G. A. (2014) Functional amyloids in the mouse sperm acrosome, Mol. Cell. Biol., 34, 2624–2634.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Lacroute, F. J. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast, J. Bacteriol., 106, 519–522.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Cox, B. S. (1965) Psi, a cytoplasmic suppressor of supersuppressors in yeast, Heredity, 20, 505–521.

    Article  Google Scholar 

  192. Roberts, B. T., and Wickner, R. B. (2003) Heritable activity: a prion that propagates by covalent autoactivation, Genes Dev., 17, 2083–2087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Du, Z., Park, K. W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460–465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Patel, B. K., Gavin-Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion, Nat. Cell. Biol., 11, 344–349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Brown, J. C., and Lindquist, S. (2009) Genes. Dev., 23, 2320–2332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Rogoza, T., Goginashvili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., Volkov, K., and Mironova, L. (2010) Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1, PNAS, 107, 10573–10577.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge Vechtomov, S. G., and Galkin, A. P. (2010) [NSI+]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467–478.

    Article  CAS  PubMed  Google Scholar 

  198. Nizhnikov, A. A., Magomedova, Z. M., Rubel, A. A., Kondrashkina, A. M., Inge-Vechtomov, S. G., and Galkin, A. P. (2012) [NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet., 58, 35–47.

    Article  CAS  PubMed  Google Scholar 

  199. Nizhnikov, A. A., Magomedova, Z. M., Saifitdinova, A. F., Inge-Vechtomov, S. G., and Galkin, A. P. (2012) Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae, Russ. J. Genet. Appl. Res., 2, 398–404.

    Article  Google Scholar 

  200. Nizhnikov, A. A., Kondrashkina, A. M., and Galkin, A. P. (2013) Interactions of [NSI+] prion-like determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae, Russ. J. Genet., 49, 1004–1012.

    Article  CAS  Google Scholar 

  201. Suzuki, G., Shimazu, N., and Tanaka, M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 336, 355–359.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Original Russian Text © A. A. Nizhnikov, K. S. Antonets, S. G. Inge-Vechtomov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 9, pp. 1356–1375.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-067, July 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizhnikov, A.A., Antonets, K.S. & Inge-Vechtomov, S.G. Amyloids: from pathogenesis to function. Biochemistry Moscow 80, 1127–1144 (2015). https://doi.org/10.1134/S0006297915090047

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915090047

Key words

Navigation