Skip to main content
Log in

Inhibitory effect of polyethylene oxide and polypropylene oxide triblock copolymers on aggregation and fusion of atherogenic low density lipoproteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) (so-called pluronics) were shown to influence the aggregation and fusion of atherogenic low density lipoproteins (atLDL) and be able to inhibit these processes. The character of the influence and the degree of the stabilizing effect depended on the structure, relative hydrophobicity, and concentration of the copolymer. Pluronics L61, P85, and L64 characterized by the hydrophilic–lipophilic balance (HLB) value from 3 to 16 had the greatest ability to suppress the aggregation of atLDL. Pluronic L81 with the higher hydrophobicity (HLB = 2) partially inhibited atLDL aggregation at low concentrations but stimulated it at high concentrations. The influence of pluronics did not have a direct connection with their ability for micelle formation, but it was realized through individual macromolecules. We suppose that effects of pluronics could be due to their interaction with the lipid component of LDL and to a possible influence of these copolymers on the structure and hydrophilic–lipophilic characteristics of lipoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabanov, A. V., Batrakova, E. V., Melik-Nubarov, N. S., Fedoseev, N. A., Dorodnich, T. Y., Alakhov, V. Y., Chekhonin, V. P., Nazarova, I. R., and Kabanov, V. A. (1992) A new class of drug carriers — micelles of poly(oxyethylene)–poly(oxypropylene) block copolymers — as microcontainers for drug targeting from blood in brain, J. Control. Release, 22, 141–157.

    Article  CAS  Google Scholar 

  2. Batrakova, E. V., Dorodnych, T. Y., Klinskii, E. Y., Kliushnenkova, E. N., Shemchukova, O. B., Goncharova, O. N., Arjakov, S. A., Alakhov, V. Y., and Kabanov, A. V. (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity, Br. J. Cancer, 74, 1545–1552.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vorob’ev, S. I., Moiseenko, O. M., Belyaev, B. L., Srednyakov, V. A., and Luzganov, Y. V. (2009) Colloid-chemical and medico-biological characteristics of the perfluorocarbon Ftoremulsion III, Pharm. Chem. J., 43, 267–263.

    Article  Google Scholar 

  4. Schmolka, I. R. (1972) Artificial skin. Preparation and properties of pluronic F127 gels for the treatment of burns, J. Biomed. Mater. Res., 6, 571–582.

    Article  CAS  PubMed  Google Scholar 

  5. Rodeheaver, G. T., Kurtz, L., Kircher, B. J., and Edlich, R. F. (1980) Pluronic F-68: a promising new skin wound cleanser, Ann. Emerg. Med., 9, 572–576.

    Article  CAS  PubMed  Google Scholar 

  6. Segel, L. D., Minten, J. M., and Schweighardt, F. K. (1992) Fluorochemical emulsion APE-LM substantially improves cardiac preservation, Am. J. Physiol., 263, 730–739.

    Google Scholar 

  7. Hunter, R. L., and Bennett, B. (1984) The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of triblock and octablock copolymers, J. Immunol., 133, 3167–3175.

    CAS  PubMed  Google Scholar 

  8. Alakhov, V. Y., Moskaleva, E. Y., Batrakova, E. V., and Kabanov, A. V. (1996) Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer, Bioconj. Chem., 7, 209–216.

    Article  CAS  Google Scholar 

  9. Alakhov, V. Y., Klinski, E., Li, S. M., Pietrzynski, G., Venne, A., Batrakova, E. V., Bronitch, T. K., and Kabanov, A. V. (1999) Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials, Colloids Surfaces B, 16, 113–134.

    Article  CAS  Google Scholar 

  10. Batrakova, E. V., Miller, D. W., Li, S. M., Alakhov, V. Y., Kabanov, A. V., and Elmquist, W. F. (2001) Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies, J. Pharmacol. Exp. Ther., 296, 551–557.

    CAS  PubMed  Google Scholar 

  11. Melnichenko, A. A., Aksenov, D. V., Myasoedova, V. A., Panasenko, O. M., Yaroslavov, A., Sobenin, I. A., Bobryshev, Y. V., and Orekhov, A. N. (2012) Pluronic block copolymers inhibit low-density lipoprotein self-association, Lipids, 47, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  12. Packard, C. J., and Shepherd, J. (1988) Low-density lipoprotein metabolism, Prog. Clin. Biol. Res., 255, 117–123.

    CAS  PubMed  Google Scholar 

  13. Khoo, J. C., Miller, E., Mc Loughlin, P., and Steinberg, D. (1988) Enhanced macrophage uptake of low density lipoprotein after self-aggregation, Arteriosclerosis, 8, 348–358.

    Article  CAS  PubMed  Google Scholar 

  14. Panasenko, O. M., Tertov, V. V., Melnichenko, A. A., Aksenov, D. V., Sobenin, I. A., Kaplun, V. V., Suprun, I. V., and Orekhov, A. N. (2006) Correlation of the size of enzymatically glycosylated apo-B-containing lipoproteins with their atherogenic potential, Biol. Membr., 23, 43–52.

    Google Scholar 

  15. Panasenko, O. M., Melnichenko, A. A., Aksenov, D. V., Tertov, V. V., Kaplun, V. V., Sobenin, I. A., and Orekhov, A. N. (2007) Oxidation-induced aggregation of LDL induced by oxidation increases their capture by smooth muscle cells of human aorta, Bull. Exp. Biol. Med., 143, 200–203.

    Article  CAS  PubMed  Google Scholar 

  16. Tertov, V. V., Sobenin, I. A., Tonevitsky, A. G., Orekhov, A. N., and Smirnov, V. N. (1990) Isolation of atherogenic modified (desialylated) low-density lipoprotein from blood of atherosclerotic patients: separation from native lipoprotein by affinity chromatography, Biochem. Biophys. Res. Commun., 167, 1122–1127.

    Article  CAS  PubMed  Google Scholar 

  17. Tertov, V. V., Orekhov, A. N., Sobenin, I. A., Gabbasov, Z. A., Popov, E. G., Yaroslavov, A. A., and Smirnov, V. N. (1992) Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation, Circ. Res., 71, 218–228.

    Article  CAS  PubMed  Google Scholar 

  18. Avogaro, P., Bon, G. B., and Cazzolato, G. (1988) Presence of a modified low density lipoprotein in humans, Arteriosclerosis, 8, 79–87.

    Article  CAS  PubMed  Google Scholar 

  19. Orekhov, A. N., Tertov, V.V., Mukhin, D. N., and Mikhailenko, I. A. (1989) Modification of low-density lipoprotein by desialylation causes lipid accumulation in cultured cells: discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients, Biochem. Biophys. Res. Commun., 162, 206–211.

    Article  CAS  PubMed  Google Scholar 

  20. Bancells, C., Villegas, S., Blanco, F. J., Benitez, S., Gallego, I., Beloki, L., Perez-Cuellar, M., Ordonez-Llanos, J., and Sanchez-Quesada, J. L. (2010) Aggregated electronegative low density lipoprotein in human plasma shows a high tendency toward phospholipolysis and particle fusion, J. Biol. Chem., 285, 32425–32435.

    Article  Google Scholar 

  21. Tertov, V. V., Kaplun, V. V., and Orekhov, A. A. (1998) Lowdensity lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification, Atherosclerosis, 138, 183–195.

    Article  CAS  PubMed  Google Scholar 

  22. Tertov, V. V., Sobenin, I. A., Gabbasov, Z. A., Popov, E. G., Jaakkola, O., Solakivi, T., Nikkari, T., Smirnov, V. A., and Orekhov, A. A. (1992) Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation, and characterization, Lab. Invest., 67, 665–667.

    CAS  PubMed  Google Scholar 

  23. Gabbasov, Z. A., Gavrilov, I. Y., and Popov, E. G. (1992) Optical density fluctuations for determination of platelet concentration in stirred suspension, Platelets, 3, 281–282.

    Google Scholar 

  24. Alexandridis, P., and Hatton, T. A. (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloids Surfaces A, 96, 1–46.

    Article  CAS  Google Scholar 

  25. Alexandridis, P., Holzwarthf, J. F., and Hatton, T. A. (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 27, 2414–2425.

    Article  CAS  Google Scholar 

  26. Batrakova, E. V., and Kabanov, A. V. (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers, J. Control. Release, 130, 98–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tertov, V. V., Sobenin, I. A., Gabbasov, Z. A., Popov, E. G., and Orekhov, A. N. (1989) Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low-density lipoproteins, Biochem. Biophys. Res. Commun., 163, 489–494.

    Article  CAS  PubMed  Google Scholar 

  28. Gavin, E. J. (2004) Platelet aggregation in whole blood, Methods Mol. Biol., 272, 77–87.

    Google Scholar 

  29. Poponina, T. M., Kapilevich, N. A., Kisteneva, I. V., Markov, V. A., and Novitsky, V. V. (2006) Influence of antiplatelet on platelet aggregation in patients with acute coronary syndrome without increase in the ST segment, Cardiovasc. Ther. Prophyl., 5, 41–45.

    Google Scholar 

  30. Chang, M. C., Chang, H. H., Chan, C. P., Chou, H. Y., Chang, B. E., Yeung, S. Y., Wang, T. M., and Jeng, J. H. (2012) Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production, Toxicol. Appl. Pharmacol., 263, 287–295.

    Article  CAS  PubMed  Google Scholar 

  31. Kamilov, F. Kh., Tikhomirkanova, G. A., Samorodova, A. I., Khaliulin, F. A., and Gubaeva, R. A. (2013) Antiaggregation activity in vitro of a new 1-ethylxanthinebased cyclohexylammonium salt, Kazan. Med. J., 94, 692–695.

    Google Scholar 

  32. Johnsson, M., Silvander, M., Karlsson, G., and Edwards, K. (1999) Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes, Langmuir, 15, 6314–6325.

    Article  CAS  Google Scholar 

  33. Batrakova, E. V., Lee, S., Li, S., Venne, A., Alakhov, V., and Kabanov, A. V. (1999) Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells, Pharm. Res., 16, 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  34. Firestone, M. A., Wolf, A. C., and Seifert, S. (2003) Smallangle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers, Biomacromolecules, 4, 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  35. Firestone, M. A., and Seifert, S. (2005) Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers, Biomacromolecules, 6, 2678–2687.

    Article  CAS  PubMed  Google Scholar 

  36. Liang, X., Mao, G., and Ng, K. Y. (2005) Effect of chain lengths of PEO–PPO–PEO on small unilamellar liposome morphology and stability: an AFM investigation, J. Colloid Interface Sci., 285, 360–372.

    Article  CAS  PubMed  Google Scholar 

  37. Zhirnov, A. E., Pavlov, D. N., Demina, T. V., Badun, G. A., Grozdova, I. D., and Melik-Nubarov, N. S. (2006) Effect of the structure of ethylene oxide-propylene oxide block copolymers and their interaction with biological membranes, Polymer Sci. Ser. A, 48, 1202–1210.

    Article  Google Scholar 

  38. Zhirnov, A. E. (2007) Interaction of Polyalkylenoxides with Cell Membrane Components: Ph. D. thesis [in Russian], Moscow.

    Google Scholar 

  39. Budkina, O. A., Demina, T. V., Dorodnykh, T. Y., Melik-Nubarov, N. S., and Grozdova, I. D. (2012) Cytotoxicity of nonionic amphiphilic copolymers, Polymer Sci. Ser. A, 54, 707–717.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Panova.

Additional information

Original Russian Text © I. G. Panova, V. V. Spiridonov, I. B. Kaplan, S. S. Trubinov, N. V. Elizova, A. A. Melnichenko, A. N. Orekhov, A. A. Yaroslavov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 8, pp. 1272–1281.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, I.G., Spiridonov, V.V., Kaplan, I.B. et al. Inhibitory effect of polyethylene oxide and polypropylene oxide triblock copolymers on aggregation and fusion of atherogenic low density lipoproteins. Biochemistry Moscow 80, 1057–1064 (2015). https://doi.org/10.1134/S0006297915080118

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915080118

Key words

Navigation