Skip to main content
Log in

Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone — the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5–2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRMP2:

collapsin response mediator protein 2

DYRK1A:

dual-specificity tyrosine-phosphorylated regulated kinase 1A

ERK5:

extracellular regulated kinase 2

GABA:

γ-butyric acid

MAP1:

microtubule-associated protein 1

NAV3:

neuron navigator 3 protein

PINK1:

PTEN-induced mitochondrial protein kinase

PKBβ1:

protein kinase Bα

PKC:

protein kinase C

PKCβ1:

protein kinase C isoform β1

PMP22:

peripheral myelin protein 22

PTI:

photothrombotic infarction

SIRT1:

NAD+-dependent deacetylase sirtuin-1

TDP-43:

transactivation response DNA-binding protein

UCHL1:

ubiquitin C-terminal hydrolase L1

References

  1. Meisel, A., Prass, K., Wolf, T., and Dirnagl, U. (2004) Stroke, in Neuroprotection: Models, Mechanisms and Therapies (Bahr, M., ed.) Wiley-Blackwell, Hoboken, NJ, pp. 9–43.

    Google Scholar 

  2. Iadecola, C., and Anrather, J. (2011) Stroke research at a crossroad: asking the brain for directions, Nat. Neurosci., 14, 1363–1368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Moskowitz, M. A. (2010) Brain protection: maybe yes, maybe no, Stroke, 41, S85–S86.

    Article  PubMed  Google Scholar 

  4. Zhiganshina, L. E., and Abakumova, T. R. (2013) Cerebrolysin in a treatment of acute ischemic stroke, Vestnik RAMN, 1, 21–29.

    Google Scholar 

  5. Watson, B. D., Dietrich, W. D., Busto, R., Wachtel, M. S., and Ginsberg, M. D. (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis, Ann. Neurol., 17, 497–504.

    Article  CAS  PubMed  Google Scholar 

  6. Dietrich, W. D., Watson, B. D., Busto, R., Ginsberg, M. D., and Bethea, J. R. (1987) Photochemically induced cerebral infarction. I. Early microvascular alterations, Acta Neuropathol., 72, 315–325.

    Article  CAS  PubMed  Google Scholar 

  7. Pevsner, P. H., Eichenbaum, J. W., Miller, D. C., Pivawer, G., Eichenbaum, K. D., Stern, A., Zakian, K. L., and Koutcher, J. A. (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation, J. Pharmacol. Toxicol. Methods, 45, 227–233.

    Article  CAS  PubMed  Google Scholar 

  8. Shanina, E. V., Redecker, C., Reinecke, S., Schallert, T., and Witte, O. W. (2005) Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function, Behav. Brain Res., 158, 69–77.

    Article  PubMed  Google Scholar 

  9. Schmidt, A., Hoppen, M., Strecker, J. K., Diederich, K., Schabitz, W. R., Schilling, M., and Minnerup, J. (2012) Photochemically induced ischemic stroke in rats, Exp. Transl. Stroke Med., 4, 13.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Romanova, G. A., Barskov, I. V., Ostrovskaya, R. U., Gudasheva, T. A., and Viktorov, I. V. (1998) Behavioral and morphological changes induced by bilateral photoinduced thrombosis of cerebral vessels in the rat frontal cortex, Pathol. Physiol. Exp. Ther., No. 2, 8–10.

    Google Scholar 

  11. Romanova, G. A., Shakova, F. M., Barskov, I. V., Stelmashuk, E. V., Genrihs, E. E., Cheremnyh, A. M., Kalinina, T. I., and Yurin, V. L. (2014) Neuroprotective and anti-amnestic effect of erythropoietin derivatives at experimental ischemic damage to brain cortex, Bull. Exp. Biol. Med., 158, 299–302.

    Google Scholar 

  12. Uzdensky, A. B. (2010) Cellular and Molecular Mechanisms of Photodynamic Therapy [in Russian], Nauka, St. Petersburg.

    Google Scholar 

  13. Brundel, M., de Bresser, J., van Dillen, J. J., Kappelle, L. J., and Biessels, G. J. (2012) Cerebral microinfarcts: a systematic review of neuropathological studies, J. Cereb. Blood Flow Metab., 32, 425–436.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Pantoni, L. (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges, Lancet Neurol., 9, 689–701.

    Article  PubMed  Google Scholar 

  15. Del Zoppo, G. J., and Mabuchi, T. (2003) Cerebral microvessel responses to focal ischemia, J. Cereb. Blood Flow Metab., 23, 879–894.

    Article  PubMed  Google Scholar 

  16. Spisak, S., Tulassay, Z., Molnar, B., and Guttman, A. (2007) Protein microchips in biomedicine and biomarker discovery, Electrophoresis, 28, 4261–4273.

    Article  CAS  PubMed  Google Scholar 

  17. Wingren, C., and Borrebaeck, C. A. (2009) Antibody-based microarrays, Methods Mol. Biol., 509, 57–84.

    CAS  PubMed  Google Scholar 

  18. Dayon, L., Turck, N., Garci-Berrocoso, T., Walter, N., Burkhard, P. R., Vilalta, A., Sahuquillo, J., Montaner, J., and Sanchez, J. C. (2011) Brain extracellular fluid protein changes in acute stroke patients, J. Proteome Res., 10, 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  19. Demyanenko, S. V., Uzdensky, A. B., Sharifulina, S. A., Lapteva, T. O., and Polyakova, L. P. (2014) PDT-induced epigenetic changes in the mouse cerebral cortex: a protein microarray study, Biochim. Biophys. Acta, 1840, 262–270.

    Article  CAS  PubMed  Google Scholar 

  20. Zilles, K. (1985) The Cortex of the Rat: A Stereotaxis Atlas, Springer-Verlag, Berlin.

    Book  Google Scholar 

  21. Villa, R. F., Gorini, A., Ferrari, F., and Hoyer, S. (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes, Neurochem. Int., 63, 765–781.

    Article  CAS  PubMed  Google Scholar 

  22. Datta, A., Park, J. E., Li, X., Zhang, H., Ho, Z. S., Heese, K., Lim, S. K., Tam, J. P., and Sze, S. K. (2010) Phenotyping of an in vitro model of ischemic penumbra by iTRAQ-based shotgun quantitative proteomics, J. Proteom. Res., 9, 472–484.

    Article  CAS  Google Scholar 

  23. Bu, X., Zhang, N., Yang, X., Liu, Y., Du, J., Liang, J., Xu, Q., and Li, J. (2011) Proteomic analysis of PKCßII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice, J. Neurochem., 117, 346–356.

    Article  CAS  PubMed  Google Scholar 

  24. Hara, H., Onodera, H., Yoshidomi, M., Matsuda, Y., and Kogure, K. (1990) Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat, J. Cereb. Blood Flow Metab., 10, 646–653.

    Article  CAS  PubMed  Google Scholar 

  25. Felipo, V., Minana, M. D., and Grisolia, S. (1993) Inhibitors of protein kinase C prevent the toxicity of glutamate in primary neuronal cultures, Brain Res., 604, 192–196.

    Article  CAS  PubMed  Google Scholar 

  26. Bright, R., and Mochly-Rosen, D. (2005) The role of protein kinase C in cerebral ischemic and reperfusion injury, Stroke, 36, 2781–2790.

    Article  CAS  PubMed  Google Scholar 

  27. Chou, W. H., and Messing, R. O. (2005) Protein kinase C isozymes in stroke, Trends Cardiovasc. Med., 15, 47–51.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, B. K., Yoon, J. S., Lee, M. G., and Jung, Y. S. (2014) Protein kinase C-β mediates neuronal activation of Na+/H+ exchanger-1 during glutamate excitotoxicity, Cell Signal., 26, 697–704.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J., Bright, R., Mochly-Rosen, D., and Giffard, R. G. (2004) Cell-specific role for e-and βI-protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury, Neuropharmacology, 47, 136–145.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, H., Sapolsky, R. M., and Steinberg, G. K. (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke, Mol. Neurobiol., 34, 249–270.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R. M., Zhang, Q. G., Li, C. H., and Zhang, G. Y. (2005) Activation of extracellular signal-regulated kinase 5 may play a neuroprotective role in hippocampal CA3/DG region after cerebral ischemia, J. Neurosci. Res., 80, 391–399.

    Article  CAS  PubMed  Google Scholar 

  32. Laguna, A., Aranda, S., Barallobre, M. J., Barhoum, R., Fernandez, E., Fotaki, V., Delabar, J. M., de la Luna, S., Villa, P., and Arbones, M. L. (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development, Dev. Cell, 15, 841–853.

    Article  CAS  PubMed  Google Scholar 

  33. Choi, H. K., and Chung, K. C. (2011) DYRK1A positively stimulates ASK1-JNK signaling pathway during apoptotic cell death, Exp. Neurobiol., 20, 35–44.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Guo, X., Williams, J. G., Schug, T. T., and Li, X. (2010) DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1, J. Biol. Chem., 285, 3223–3232.

    Google Scholar 

  35. Trancikova, A., Tsika, E., and Moore, D. J. (2012) Mitochondrial dysfunction in genetic animal models of Parkinson’s disease, Antioxid. Redox Signal., 16, 896–919.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. De Vries, R. L., and Przedborski, S. (2013) Mitophagy and Parkinson’s disease: be eaten to stay healthy, Mol. Cell Neurosci., 55, 37–43.

    Article  PubMed  Google Scholar 

  37. Caldeira, M. V., Salazar, I. L., Curcio, M., Canzoniero, L. M., and Duarte, C. B. (2014) Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog. Neurobiol., 112, 50–69.

    Article  CAS  PubMed  Google Scholar 

  38. Yamauchi, T., Sakurai, M., Abe, K., Matsumiya, G., and Sawa, Y. (2008) Ubiquitin-mediated stress response in the spinal cord after transient ischemia, Stroke, 39, 1883–1889.

    Article  CAS  PubMed  Google Scholar 

  39. Kruger, R. (2004) The role of synphilin-1 in synaptic function and protein degradation, Cell Tissue Res., 318, 195–199.

    Article  PubMed  Google Scholar 

  40. Maes, T., Barcelo, A., and Buesa, C. (2002) Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans, Genomics, 80, 21–30.

    Article  CAS  PubMed  Google Scholar 

  41. Halpain, S., and Dehmelt, L. (2006) The MAP1 family of microtubule-associated proteins, Genome Biol., 7, 2–4.

    Article  Google Scholar 

  42. Chen, A., Liao, W. P., Lu, Q., Wong, W. S., and Wong, P. T. (2007) Up-regulation of dihydropyrimidinase-related protein 2, spectrin alpha II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats — a proteomics approach, Neurochem. Int., 50, 1078–1086.

    Article  CAS  PubMed  Google Scholar 

  43. Hou, S. T., Jiang, S. X., Aylsworth, A., Ferguson, G., Slinn, J., Hu, H., Leung, T., Kappler, J., and Kaibuchi, K. (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity, J. Neurochem., 111, 870–881.

    Article  CAS  PubMed  Google Scholar 

  44. Quarles, R. H. (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration, Cell. Mol. Life Sci., 59, 1851–1871.

    Article  CAS  PubMed  Google Scholar 

  45. Gallwitz, D., and Jahn, R. (2003) The riddle of the Sec1/Munc-18 proteins — new twists added to their interactions with SNAREs, Trends Biochem. Sci., 28, 113–116.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, E. B., Lee, V. M., and Trojanowski, J. Q. (2011) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration, Nat. Rev. Neurosci., 13, 38–50.

    PubMed Central  PubMed  Google Scholar 

  47. Kanazawa, M., Kakita, A., Igarashi, H., Takahashi, T., Kawamura, K., Takahashi, H., Nakada, T., Nishizawa, M., and Shimohata, T. (2011) Biochemical and histopathological alterations in TAR DNA-binding protein-43 after acute ischemic stroke in rats, J. Neurochem., 116, 957–965.

    Article  CAS  PubMed  Google Scholar 

  48. Zechariah, A. E., Ali, A., Hagemann, N., Jin, F., Doeppner, T. R., Helfrich, I., Mies, G., and Hermann, D. M. (2013) Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells, Arterioscler. Thromb. Vasc. Biol., 33, 1561–1567.

    Article  CAS  PubMed  Google Scholar 

  49. Back, T., Ginsberg, M. D., Dietrich, W. D., and Watson, B. D. (1996) Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology, J. Cereb. Blood Flow Metab., 16, 202–213.

    Article  CAS  PubMed  Google Scholar 

  50. Puyal, J., Ginet, V., and Clarke, P. G. (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection, Prog. Neurobiol., 105, 24–48.

    Article  PubMed  Google Scholar 

  51. Sims, N. R., and Anderson, M. F. (2002) Mitochondrial contributions to tissue damage in stroke, Neurochem. Int., 40, 511–526.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Uzdensky.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 6, pp. 937–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanenko, S.V., Panchenko, S.N. & Uzdensky, A.B. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochemistry Moscow 80, 790–799 (2015). https://doi.org/10.1134/S0006297915060152

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060152

Key words

Navigation