Skip to main content
Log in

Coelenterazine-dependent luciferases

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Bioluminescence is a widespread natural phenomenon. Luminous organisms are found among bacteria, fungi, protozoa, coelenterates, worms, molluscs, insects, and fish. Studies on bioluminescent systems of various organisms have revealed an interesting feature — the mechanisms underlying visible light emission are considerably different in representatives of different taxa despite the same final result of this biochemical process. Among the several substrates of bioluminescent reactions identified in marine luminous organisms, the most commonly used are imidazopyrazinone derivatives such as coelenterazine and Cypridina luciferin. Although the substrate used is the same, bioluminescent proteins that catalyze light emitting reactions in taxonomically remote luminous organisms do not show similarity either in amino acid sequences or in spatial structures. In this review, we consider luciferases of various luminous organisms that use coelenterazine or Cypridina luciferin as a substrate, as well as modifications of these proteins that improve their physicochemical and bioluminescent properties and therefore their applicability in bioluminescence imaging in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haddock, S. H., Moline, M. A., and Case, J. F. (2010) Bioluminescence in the sea, Ann. Rev. Mar. Sci., 2, 443–493.

    Article  PubMed  Google Scholar 

  2. Widder, E. A. (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity, Science, 328, 704–708.

    Article  CAS  PubMed  Google Scholar 

  3. Shimomura, O. (2006) Bioluminescence: Chemical Principles and Methods, World Scientific Publishing, Singapore.

    Book  Google Scholar 

  4. Hori, K., Charbonneau, H., Hart, R. C., and Cormier, M. J. (1977) Structure of native Renilla reniformis luciferin, Proc. Natl. Acad. Sci. USA, 74, 4285–4287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shimomura, O., Masugi, T., Johnson, F. H., and Haneda, Y. (1978) Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilirostris, Biochemistry, 17, 994–998.

    Article  CAS  PubMed  Google Scholar 

  6. Inouye, S., and Shimomura, O. (1997) The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate, Biochem. Biophys. Res. Commun., 233, 349–353.

    Article  CAS  PubMed  Google Scholar 

  7. Shimomura, O., and Flood, P. R. (1998) Luciferase of the scyphozoan medusa Periphylla periphylla, Biol. Bull., 194, 244–252.

    Article  CAS  Google Scholar 

  8. Shimomura, O., Flood, P. R., Inouye, S., Bryan, B., and Shimomura, A. (2001) Isolation and properties of the luciferase stored in the ovary of the scyphozoan medusa Periphylla periphylla, Biol. Bull., 201, 339–347.

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, A. K., and Herring, P. J. (1990) Imidazolopyrazine bioluminescence in copepods and other marine organisms, Mar. Biol., 104, 219–225.

    Article  CAS  Google Scholar 

  10. Markova, S. V., Golz, S., Frank, L. A., Kalthof, B., and Vysotski, E. S. (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme, J. Biol. Chem., 279, 3212–3217.

    Article  CAS  PubMed  Google Scholar 

  11. Oba, Y., Tsuduki, H., Kato, S., Ojika, M., and Inouye, S. (2004) Identification of the luciferin-luciferase system and quantification of coelenterazine by mass spectrometry in the deep-sea luminous ostracod Conchoecia pseudodiscophora, Chembiochem, 5, 1495–1499.

    Article  CAS  PubMed  Google Scholar 

  12. Robison, B. H., Reisenbichler, K. R., Hunt, J. C., and Haddock, S. H. (2003) Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis, Biol. Bull., 205, 102–109.

    Article  PubMed  Google Scholar 

  13. Homaei, A. A., Mymandi, A. B., Sariri, R., Kamrani, E., Stevanato, R., Etezad, S. M., and Khajeh, K. (2013) Purification and characterization of a novel thermostable luciferase from Benthosema pterotum, J. Photochem. Photobiol. B, 125, 131–136.

    Article  CAS  PubMed  Google Scholar 

  14. Tsuji, F. I. (2002) Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid” Watasenia scintillans, Biochim. Biophys. Acta, 1564, 189–197.

    Article  CAS  PubMed  Google Scholar 

  15. Chou, C. M., Tung, Y. W., and Isobe, M. (2014) Molecular mechanism of Symplectoteuthis bioluminescence — Part 4: Chromophore exchange and oxidation of the cysteine residue, Bioorg. Med. Chem., 22, 4177–4188.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, E., Kuse, M., and Nishikawa, T. (2009) Dehydrocoelenterazine is the organic substance constituting the prosthetic group of pholasin, Chembiochem, 10, 2725–2729.

    Article  CAS  PubMed  Google Scholar 

  17. Kishi, Y., Goto, T., Hirata, Y., Shimomura, O., and Johnson, F. H. (1966) Cypridina bioluminescence. I. Structure of Cypridina luciferin, Tetrahedron Lett., 29, 3427–3436.

    Article  Google Scholar 

  18. Cormier, M. J. (1978) Comparative biochemistry of animal systems, in Bioluminescence in Action (Herring, P. J., ed.) Academic Press, N. Y., pp. 75–108.

    Google Scholar 

  19. Tsuji, F. I., Barnes, A. T., and Case, J. F. (1972) Bioluminescence in the marine teleost, Porichthys notatus, and its induction in a non-luminous form by Cypridina (ostracod) luciferin, Nature, 237, 515–516.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuji, F. I., Nafpaktitis, B. G., Goto, T., Cormier, M. J., Wampler, J. E., and Anderson, J. M. (1975) Spectral characteristics of the bioluminescence induced in the marine fish Porichthys notatus by Cypridina (ostracod) luciferin, Mol. Cell. Biochem., 9, 3–8.

    Article  CAS  PubMed  Google Scholar 

  21. Haddock, S. H., Rivers, T. J., and Robison, B. H. (2001) Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence, Proc. Natl. Acad. Sci. USA, 98, 11148–11151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Oba, Y., Kato, S., Ojika, M., and Inouye, S. (2009) Biosynthesis of coelenterazine in the deep-sea copepod Metridia pacifica, Biochem. Biophys. Res. Commun., 390, 684–688.

    Article  CAS  PubMed  Google Scholar 

  23. Kato, S., Oba, Y., Ojika, M., and Inouye, S. (2007) Biosynthesis of Cypridina luciferin in Cypridina noctiluca, Heterocycles, 72, 673–676.

    Article  CAS  Google Scholar 

  24. Hur, G. H., Vickery, C. R., and Burkart, M. D. (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology, Nat. Prod. Rep., 29, 1074–1098.

    Article  CAS  PubMed  Google Scholar 

  25. Thomson, C. M., Herring, P. J., and Campbell, A. K. (1997) The widespread occurrence and tissue distribution of the imidazolopyrazine luciferins, J. Biolum. Chemilum., 12, 87–91.

    Article  CAS  Google Scholar 

  26. Anderson, J. M., Hori, K., and Cormier, M. J. (1978) A bioluminescence assay for PAP (3′,5′-diphosphoadenosine) and PAPS (3'-phosphoadenylyl sulfate), Methods Enzymol., 57, 244–257.

    CAS  Google Scholar 

  27. Nakamura, M., Suzuki, T., Ishizaka, N., Sato, J., and Inouye, S. (2014) Identification of 3-enol sulfate of Cypridina luciferin, Cypridina luciferyl sulfate, in the seafirefly Cypridina (Vargula) hilgendorfii, Tetrahedron, 70, 2161–2168.

    Article  CAS  Google Scholar 

  28. Vysotski, E. S., and Lee, J. (2004) Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism, Acc. Chem. Res., 37, 405–415.

    Article  CAS  PubMed  Google Scholar 

  29. Vysotski, E. S., Markova, S. V., and Frank, L. A. (2006) Calcium-regulated photoproteins of marine coelenterates, Mol. Biol., 40, 355–367.

    Article  CAS  Google Scholar 

  30. Markova, S. V., Burakova, L. P., Golz, S., Malikova, N. P., Frank, L. A., and Vysotski, E. S. (2012) The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+-regulated photoprotein, FEBS J., 279, 856–870.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z. J., Stepanyuk, G. A., Vysotski, E. S., Lee, J., Markova, S. V., Malikova, N. P., and Wang, B. C. (2006) Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state, Proc. Natl. Acad. Sci. USA, 103, 2570–2575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Evstigneev, P. V., and Bityukov, E. P. (1990) Bioluminescence of Marine Copepods [in Russian], Naukova Dumka, Kiev.

    Google Scholar 

  33. Inouye, S., Watanabe, K., Nakamura, H., and Shimomura, O. (2000) Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase, FEBS Lett., 481, 19–25.

    Article  CAS  PubMed  Google Scholar 

  34. Bryan, B., and Szent-Gyorgyi, C. (1999) Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, WO994901902.

    Google Scholar 

  35. Lorenz, W. W., McCann, R. O., Longiaru, M., and Cormier, M. J. (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase, Proc. Natl. Acad. Sci. USA, 88, 4438–4442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Titushin, M. S., Markova, S. V., Frank, L. A., Malikova, N. P., Stepanyuk, G. A., Lee, J., and Vysotski, E. S. (2008) Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase, Photochem. Photobiol. Sci., 7, 189–196.

    Article  CAS  PubMed  Google Scholar 

  37. Borisova, V. V., Frank, L. A., Markova, S. V., Burakova, L. P., and Vysotski, E. S. (2008) Recombinant Metridia luciferase isoforms: expression, refolding and applicability for in vitro assay, Photochem. Photobiol. Sci., 7, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  38. Markova, S. V., Larionova, M. D., Burakova, L. P., and Vysotski, E. S. (2015) The smallest natural high-active luciferase: cloning and characterization of novel 16.5-kDa luciferase from copepod Metridia longa, Biochem. Biophys. Res. Commun., 457, 77–82.

    Article  CAS  PubMed  Google Scholar 

  39. Takenaka, Y., Masuda, H., Yamaguchi, A., Nishikawa, S., Shigeri, Y., Yoshida, Y., and Mizuno, H. (2008) Two forms of secreted and thermostable luciferases from the marine copepod crustacean Metridia pacifica, Gene, 425, 28–35.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson, E. M., Nagata, S., and Tsuji, F. I. (1989) Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii, Proc. Natl. Acad. Sci. USA, 86, 6567–6571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Nakajima, Y., Kobayashi, K., Yamagishi, K., Enomoto, T., and Ohmiya, Y. (2004) cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod Cypridina noctiluca, Biosci. Biotechnol. Biochem., 68, 565–570.

    Article  PubMed  Google Scholar 

  42. Takenaka, Y., Yamaguchi, A., Tsuruoka, N., Torimura, M., Gojobori, T., and Shigeri, Y. (2012) Evolution of bioluminescence in marine planktonic copepods, Mol. Biol. Evol., 29, 1669–1681.

    Article  CAS  PubMed  Google Scholar 

  43. Takenaka, Y., Noda-Ogura, A., Imanishi, T., Yamaguchi, A., Gojobori, T., and Shigeri, Y. (2013) Computational analysis and functional expression of ancestral copepod luciferase, Gene, 528, 201–205.

    Article  CAS  PubMed  Google Scholar 

  44. Charbonneau, H., and Cormier, M. J. (1979) Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of calcium triggered luciferin-binding protein, J. Biol. Chem., 254, 769–780.

    CAS  PubMed  Google Scholar 

  45. Ward, W. W., and Cormier, M. J. (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green fluorescent protein, J. Biol. Chem., 254, 781–788.

    CAS  PubMed  Google Scholar 

  46. Loening, A. M., Fenn, T. D., and Gambhir, S. S. (2007) Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis, J. Mol. Biol., 374, 1017–1028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Stepanyuk, G. A., Liu, Z. J., Markova, S. V., Frank, L. A., Lee, J., Vysotski, E. S., and Wang, B. C. (2008) Crystal structure of coelenterazine-binding protein from Renilla muelleri at 1.7 Å: why it is not a calcium-regulated photoprotein, Photochem. Photobiol. Sci., 7, 442–447.

    Article  CAS  PubMed  Google Scholar 

  48. Stepanyuk, G. A., Liu, Z. J., Vysotski, E. S., Lee, J., Rose, J. P., and Wang, B. C. (2009) Structure based mechanism of the Ca2+-induced release of coelenterazine from the Renilla binding protein, Proteins, 74, 583–593.

    Article  CAS  PubMed  Google Scholar 

  49. Cormier, M. J. (1978) Application of Renilla bioluminescence: an introduction, Methods Enzymol., 57, 237–244.

    CAS  Google Scholar 

  50. Stepanyuk, G. A., Unch, J., Malikova, N. P., Markova, S. V., Lee, J., and Vysotski, E. S. (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase, Anal. Bioanal. Chem., 398, 1809–1817.

    Article  CAS  PubMed  Google Scholar 

  51. Loening, A. M., Fenn, T. D., Wu, A. M., and Gambhir, S. S. (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output, Protein Eng. Des. Sel., 19, 391–400.

    Article  CAS  PubMed  Google Scholar 

  52. Deng, L., Vysotski, E. S., Markova, S. V., Liu, Z. J., Lee, J., Rose, J., and Wang, B. C. (2005) All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin, Protein Sci., 14, 663–675.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Stepanyuk, G. A., Liu, Z. J., Burakova, L. P., Lee, J., Rose, J., Vysotski, E. S., and Wang, B. C. (2013) Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state, Biochim. Biophys. Acta, 1834, 2139–2146.

    Article  CAS  PubMed  Google Scholar 

  54. Matthews, J. C., Hori, K., and Cormier, M. J. (1977). Purification and properties of Renilla reniformis luciferase, Biochemistry, 16, 85–91.

    Article  CAS  PubMed  Google Scholar 

  55. Woo, J., and von Arnim, A. G. (2008) Mutational optimization of the coelenterazine-dependent luciferase from Renilla, Plant Methods, 4, 23.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Weissleder, R. (2001) A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  57. Loening, A. M., Wu, A. M., and Gambhir, S. S. (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects, Nat. Methods, 4, 641–643.

    Article  CAS  PubMed  Google Scholar 

  58. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., and Breakefield, X. O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo, Mol. Ther., 11, 435–443.

    Article  CAS  PubMed  Google Scholar 

  59. Verhaegent, M., and Christopoulos, T. K. (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization, Anal. Chem., 74, 4378–4385.

    Article  PubMed  Google Scholar 

  60. Markova, S. V., Burakova, L. P., and Vysotski, E. S. (2012) High-active truncated luciferase of copepod Metridia longa, Biochem. Biophys. Res. Commun., 417, 98–103.

    Article  CAS  PubMed  Google Scholar 

  61. Inouye, S., and Sahara, Y. (2008) Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps, Biochem. Biophys. Res. Commun., 365, 96–101.

    Article  CAS  PubMed  Google Scholar 

  62. Remy, I., and Michnick, S. W. (2006) A highly sensitive protein-protein interaction assay based on Gaussia luciferase, Nat. Methods, 3, 977–979.

    Article  CAS  PubMed  Google Scholar 

  63. Stepanyuk, G. A., Xu, H., Wu, C. K., Markova, S. V., Lee, J., Vysotski, E. S., and Wang, B. C. (2008) Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells, Protein Expr. Purif., 61, 142–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Degeling, M. H., Bovenberg, M. S., Lewandrowski, G. K., de Gooijer, M. C., Vleggeert-Lankamp, C. L., Tannous, M., Maguire, C. A., and Tannous, B. A. (2013) Directed molecular evolution reveals Gaussia luciferase variants with enhanced light output stability, Anal. Chem., 85, 3006–3012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Welsh, J. P., Patel, K. G., Manthiram, K., and Swartz, J. R. (2009) Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence, Biochem. Biophys. Res. Commun., 389, 563–568.

    Article  CAS  PubMed  Google Scholar 

  66. Kim, S. B., Suzuki, H., Sato, M., and Tao, H. (2011) Superluminescent variants of marine luciferases for bioassays, Anal. Chem., 83, 8732–8740.

    Article  CAS  PubMed  Google Scholar 

  67. Chung, E., Yamashita, H., Au, P., Tannous, B. A., Fukumura, D., and Jain, R. K. (2009) Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases, PLoS One, 4, e83–6.

    Article  Google Scholar 

  68. Lupold, S. E., Johnson, T., Chowdhury, W. H., and Rodriguez, R. (2012) A real time Metridia luciferase based non-invasive reporter assay of mammalian cell viability and cytotoxicity via the β-actin promoter and enhancer, PLoS One, 7, e365–5.

    Article  Google Scholar 

  69. Kim, S. B., Torimura, M., and Tao, H. (2013) Creation of artificial luciferases for bioassays, Bioconjug. Chem., 24, 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  70. Kim, S. B., and Izumi, H. (2014) Functional artificial luciferases as an optical readout for bioassays, Biochem. Biophys. Res. Commun., 448, 418–423.

    Article  CAS  PubMed  Google Scholar 

  71. Shimomura, O., Masugi, T., Johnson, F. H., and Haneda, Y. (1978) Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris, Biochemistry, 17, 994–998.

    Article  CAS  PubMed  Google Scholar 

  72. Inouye, S., and Sasaki, S. (2007) Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp Oplophorus gracilirostris, Protein Expr. Purif., 56, 261–268.

    Article  CAS  PubMed  Google Scholar 

  73. Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, M. G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M. B., Benink, H. A., Eggers, C. T., Slater, M. R., Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., and Wood, K. V. (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, ACS Chem. Biol., 7, 1848–1857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Inouye, S., Sato, J., Sahara-Miura, Y., Yoshida, S., and Hosoya, T. (2014) Luminescence enhancement of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase by three amino acid substitutions, Biochem. Biophys. Res. Commun., 445, 157–162.

    Article  CAS  PubMed  Google Scholar 

  75. Shimomura, O., and Johnson, F. H. (1970) Mechanisms in the quantum yield of Cypridina bioluminescence, Photochem. Photobiol., 12, 291–295.

    Article  CAS  PubMed  Google Scholar 

  76. Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) Signal P 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, 8, 785–786.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, Y. F., Eng, E. T., Zhu, J., Lu, C., Walz, T., and Springer, T. A. (2012) Sequence and structure relationships within von Willebrand factor, Blood, 120, 449–458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Viviani, V. R. (2002) The origin, diversity, and structure function relationships of insect luciferases, Cell. Mol. Life Sci., 59, 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  79. Prasher, D., McCann, R. O., and Cormier, M. J. (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein, Biochem. Biophys. Res. Commun., 126, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  80. Inouye, S., Noguchi, M., Sakaki, Y., Takagi, Y., Miyata, T., Iwanaga, S., Miyata, T., and Tsuji, F. I. (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin, Proc. Natl. Acad. Sci. USA, 82, 3154–3158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Illarionov, B. A., Markova, S. V., Bondar, V. S., Vysotski, E. S., and Gitelson, J. I. (1992) Cloning and expression of cDNA for the Ca2+-activated photoprotein obelin from the hydroid polyp Obelia longissima, Dokl. Akad. Nauk, 326, 911–913.

    CAS  Google Scholar 

  82. Markova, S. V., Vysotski, E. S., Blinks, J. R., Burakova, L. P., Wang, B. C., and Lee, J. (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins, Biochemistry, 41, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  83. Markova, S. V., Burakova, L. P., Frank, L. A., Golz, S., Korostileva, K. A., and Vysotski, E. S. (2010) Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein, Photochem. Photobiol. Sci., 9, 757–765.

    Article  CAS  PubMed  Google Scholar 

  84. Burakova, L., Natashin, P., Markova, S., Eremeeva, E., and Vysotsky, E. (2014) The C-terminal tyrosine deletion in mitrocomin increases its bioluminescent activity, Luminescence, 29, 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vysotski.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 6, pp. 845–866.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markova, S.V., Vysotski, E.S. Coelenterazine-dependent luciferases. Biochemistry Moscow 80, 714–732 (2015). https://doi.org/10.1134/S0006297915060073

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060073

Key words

Navigation