Skip to main content
Log in

Bioluminescent imaging systems boosting near-infrared signals in mammalian cells

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence (BL) is broadly used as an optical readout in bioassays and molecular imaging. In this study, the near-infrared (NIR) BL imaging systems were developed. The system was harnessed by prototype copepod luciferases, artificial luciferase 30 (ALuc30) and its miniaturized version picALuc, and were characterized with 17 kinds of coelenterazine (CTZ) analogues carrying bulky functional groups or cyanine 5 (Cy5). They were analyzed of BL spectral peaks and enzymatic kinetics, and explained with computational modeling. The results showed that (1) the picALuc-based system surprisingly boosts the BL intensities predominantly in the red and NIR region with its specific CTZ analogues; (2) both ALuc30- and picALuc-based systems develop unique through-bond energy transfer (TBET)-driven spectral bands in the NIR region with a Cy5-conjugated CTZ analogue (Cy5-CTZ); and (3) according to the computational modeling, the miniaturized version, picALuc, has a large binding pocket, which can accommodate CTZ analogues containing bulky functional groups and thus allowing NIR BL. This study is an important addition to the BL imaging toolbox with respect to the development of orthogonal NIR reporter systems applicable to physiological samples, together with the understanding of the BL-emitting chemistry of marine luciferases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Shimomura, O. (2006). Bioluminescence. World Scientific Publishing Co. Pte. Ltd.

    Book  Google Scholar 

  2. Ozawa, T., Yoshimura, H., & Kim, S. B. (2013). Advances in fluorescence and bioluminescence imaging. Analytical Chemistry, 85(2), 590–609.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, S. B., & Paulmurugan, R. (2021). Bioluminescent imaging systems for assay developments. Analytical Sciences, 37(2), 233–247.

    Article  CAS  PubMed  Google Scholar 

  4. Iwano, S., Sugiyama, M., Hama, H., Watakabe, A., Hasegawa, N., Kuchimaru, T., Tanaka, K. Z., Takahashi, M., Ishida, Y., Hata, J., Shimozono, S., Namiki, K., Fukano, T., Kiyama, M., Okano, H., Kizaka-Kondoh, S., McHugh, T. J., Yamamori, T., Hioki, H., … Miyawaki, A. (2018). Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science, 359(6378), 935–939.

    Article  CAS  PubMed  Google Scholar 

  5. Loening, A. M., Wu, A. M., & Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods, 4(8), 641–643.

    Article  CAS  PubMed  Google Scholar 

  6. Iwano, S., Obata, R., Miura, C., Kiyama, M., Hama, K., Nakamura, M., Amano, Y., Kojima, S., Hirano, T., Maki, S., & Niwa, H. (2013). Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron, 69(19), 3847–3856.

    Article  CAS  Google Scholar 

  7. Tamaki, S., Kitada, N., Kiyama, M., Fujii, R., Hirano, T., Kim, S. B., & Maki, S. (2021). Color-tunable bioluminescence imaging portfolio for cell imaging. Scientific Reports, 11(1), 2219.

    Article  CAS  Google Scholar 

  8. Hastings, J. W. (1996). Chemistries and colors of bioluminescent reactions: a review. Gene, 173(1), 5–11.

    Article  CAS  PubMed  Google Scholar 

  9. Viviani, V. R., Uchida, A., Viviani, W., & Ohmiya, Y. (2002). The influence of Ala243 (Gly247), Arg215 and Thr226 (Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases. Photochemistry and Photobiology, 76(5), 538–544.

    Article  CAS  PubMed  Google Scholar 

  10. Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, M. G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M. B., Benink, H. A., Eggers, C. T., Slater, M. R., Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., & Wood, K. V. (2012). Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chemical Biology, 7(11), 1848–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dijkema, F. M., Nordentoft, M. K., Didriksen, A. K., Corneliussen, A. S., Willemoes, M., & Winther, J. R. (2021). Flash properties of Gaussia luciferase are the result of covalent inhibition after a limited number of cycles. Protein Science, 30(3), 638–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohmuro-Matsuyama, Y., Furuta, T., Matsui, H., Kanai, M., & Ueda, H. (2022). Miniaturization of bright light-emitting luciferase ALuc: picALuc. ACS Chemical Biology, 17(4), 864–872.

    Article  CAS  PubMed  Google Scholar 

  13. Auld, D. S., Narahari, J., Ho, P. I., Casalena, D., Nguyen, V., Cirbaite, E., Hughes, D., Daly, J., & Webb, B. (2018). Characterization and use of TurboLuc luciferase as a reporter for high-throughput assays. Biochemistry, 57(31), 4700–4706.

    Article  CAS  PubMed  Google Scholar 

  14. Inouye, S., & Sahara, Y. (2008). Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochemical and Biophysical Research Communications, 365(1), 96–101.

    Article  CAS  PubMed  Google Scholar 

  15. Takenaka, Y., Masuda, H., Yamaguchi, A., Nishikawa, S., Shigeri, Y., Yoshida, Y., & Mizuno, H. (2008). Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene, 425(1–2), 28–35.

    Article  CAS  PubMed  Google Scholar 

  16. Takenaka, Y., Yamaguchi, A., Tsuruoka, N., Torimura, M., Gojobori, T., & Shigeri, Y. (2012). Evolution of bioluminescence in marine planktonic copepods. Molecular Biology and Evolution, 29(6), 1669–1681.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, S. B., Torimura, M., & Tao, H. (2013). Creation of artificial luciferases for bioassays. Bioconjugate Chemistry, 24(12), 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  18. Takenaka, Y., Noda-Ogura, A., Imanishi, T., Yamaguchi, A., Gojobori, T., & Shigeri, Y. (2013). Computational analysis and functional expression of ancestral copepod luciferase. Gene, 528(2), 201–205.

    Article  CAS  PubMed  Google Scholar 

  19. Heffern, M. C. (2017). Diversifying the glowing bioluminescent toolbox. ACS Central Science, 3(12), 1234–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishihara, R., Paulmurugan, R., Nakajima, T., Yamamoto, E., Natarajan, A., Afjei, R., Hiruta, Y., Iwasawa, N., Nishiyama, S., Citterio, D., Sato, M., Kim, S. B., & Suzuki, K. (2019). Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events in vivo. Theranostics, 9(9), 2646–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimomura, O. (1995). Cause of spectral variation in the luminescence of semisynthetic aequorins. Biochemical Journal, 306, 537–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yeh, H. W., Karmach, O., Ji, A., Carter, D., Martins-Green, M. M., & Ai, H. W. (2017). Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nature Methods, 14(10), 971–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tannous, B. A. (2009). Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nature Protocols, 4(4), 582–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abe, M., Nishihara, R., Ikeda, Y., Nakajima, T., Sato, M., Iwasawa, N., Nishiyama, S., Paulmurugan, R., Citterio, D., Kim, S. B., & Suzuki, K. (2019). Near-infrared bioluminescence imaging with a through-bond energy transfer cassette. ChemBioChem, 20(15), 1919–1923.

    Article  CAS  PubMed  Google Scholar 

  25. Loening, A. M., Fenn, T. D., Wu, A. M., & Gambhir, S. S. (2006). Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Engineering, Design & Selection, 19(9), 391–400.

    Article  CAS  Google Scholar 

  26. Wu, N., Kobayashi, N., Tsuda, K., Unzai, S., Saotome, T., Kuroda, Y., & Yamazaki, T. (2020). Solution structure of Gaussia luciferase with five disulfide bonds and identification of a putative coelenterazine binding cavity by heteronuclear NMR. Scientific Reports, 10(1), 20069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Society for the Promotion of Science (JSPS Grants 21H04948, 20K21851, and 17H01215).

Author information

Authors and Affiliations

Authors

Contributions

SBK mainly wrote the main manuscript, and SBK and TF prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sung-Bae Kim.

Ethics declarations

Conflict of interest

YOM is an employee of Shimadzu Corporation. SBK and TF received research funding from Shimadzu Corporation. The other authors have no competing interests to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2023_367_MOESM1_ESM.docx

Supplementary file1 Figure S1. BL images of picALuc at various wavelengths; Figure S2. Determination of the BL intensities of picALuc according to the substrates, 2a, 2b, and 2c, in living mammalian cells (DOCX 3286 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SB., Furuta, T., Ohmuro-Matsuyama, Y. et al. Bioluminescent imaging systems boosting near-infrared signals in mammalian cells. Photochem Photobiol Sci 22, 1267–1278 (2023). https://doi.org/10.1007/s43630-023-00367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00367-8

Keywords

Navigation