Skip to main content
Log in

Bioluminescence assay for cell viability

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin–luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehninger, A. (1972) Biochemistry, Worth Publishers, New York.

    Google Scholar 

  2. Ugarova, N. N., Brovko, L. Yu., Trdatian, I. Yu., and Rainina, E. I. (1987) Bioluminescent methods of analysis in microbiology, Appl. Biochem. Microbiol. (Moscow), 23, 11–20.

    Google Scholar 

  3. Ugarova, N. N. (1993) Bioanalytical applications of firefly luciferase, Appl. Biochem. Microbiol. (Moscow), 29, 135–144.

    Google Scholar 

  4. McElroy, W. D. (1947) The energy source for bioluminescence in isolated systems, Proc. Natl. Acad. Sci. USA, 33, 342–348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ando, Y., Niwa, K., Yamada, N., Enomoto, T., Irie, T., Kubota, H., Ohmiya, Y., and Akiyama, H. (2008) Firefly bioluminescence quantum yield and color change by pH-sensitive green emission, Nature Photon, 2, 44–47.

    Article  CAS  Google Scholar 

  6. Berthold, F., and Tarkkanen, V. (2013) Luminometer development in the last four decades: recollections of two entrepreneurs, Luminescence, 28, 16.

    Article  Google Scholar 

  7. Lundin, A. (2000) Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites, Methods Enzymol., 305, 346–370.

    CAS  PubMed  Google Scholar 

  8. Ugarova, N. N., Maloshenok, L. G., Moroz, N. A., and Lomakina, G. Yu. (2004) Reagent for determination of adenosine 5′-triphosphate, RF Patent 2268943.

    Google Scholar 

  9. Ugarova, N. N., Koksharov, M. I., and Lomakina, G. Yu. (2009) Reagent for determination of adenosine 5′-triphosphate, RF Patent 2420594.

    Google Scholar 

  10. Koksharov, M. I., and Ugarova, N. N. (2009) Increased thermal stability of luciferase of lighting beetles Luciola mingrelica by random mutagenesis, Moscow Univ. Chem. Bull., 64, 18–22.

    Article  Google Scholar 

  11. Koksharov, M. I., and Ugarova, N. N. (2011) Thermostabilization of firefly luciferase by in vivo directed evolution, Prot. Eng. Des. Select., 24, 835–844.

    Article  CAS  Google Scholar 

  12. Guardigli, M., Lundin, A., and Roda, A. (2011) in Chemiluminescence and Bioluminescence: Past, Present and Future (Roda, A., ed.) Royal Society of Chemistry, Cambridge, pp. 143–190.

  13. Narsaiah, K., Jha, S. N., Jaiswal, P., Singh, A. K., Gupta, M., and Bhardwaj, R. (2012) Estimation of total bacteria on mango surface by using ATP bioluminescence, Sci. Hortic. (Amsterdam), 146, 159–163.

    Article  CAS  Google Scholar 

  14. Wang, H.-Y., Bhunia, A. K., and Lu, C. (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage, Biosens. Bioelectron., 22, 582–588.

    Article  CAS  PubMed  Google Scholar 

  15. Romanova, N. A., Brovko, L. Yu., and Ugarova, N. N. (1997) Comparative assessment of methods of intracellular ATP extraction from different types of microorganisms for bioluminescent determination of microbial cells, Appl. Biochem. Microbiol., 33, 306–311.

    Google Scholar 

  16. Luo, J., Liu, X., Tian, Q., Yue, W., Zeng, J., Chen, G., and Cai, X. (2009) Disposable bioluminescence-based biosensor for detection of bacterial count in food, Anal. Biochem., 394, 1–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hattori, N., Sakakibara, T., Kajiyama, N., Igarashi, T., Maeda, M., and Murakami, S. (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride, Anal. Biochem., 319, 287–295.

    Article  CAS  PubMed  Google Scholar 

  18. Rakotonirainy, M. S., Heraud, C., and Lavedrine, B. (2003) Detection of viable fungal spores contaminant on documents and rapid control of the effectiveness of an ethylene oxide disinfection using ATP assay, Luminescence, 18, 113–121.

    Article  CAS  PubMed  Google Scholar 

  19. Hett, E. C., and Rubin, E. J. (2008) Bacterial growth and cell division: a mycobacterial perspective, Microbiol. Mol. Biol. Rev., 72, 126–156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hoffner, S., Jimenez-Misas, C., and Lundin, A. (1999) Improved extraction and assay of mycobacterial ATP for rapid drug susceptibility testing, Luminescence, 14, 255–261.

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor, R., and Yadav, J. S. (2010) Development of a rapid ATP bioluminescence assay for biocidal susceptibility testing of rapidly growing mycobacteria, J. Clin. Microbiol., 48, 3725–3728.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chida, J., Yamane, K., Takei, T., and Kido, H. (2012) An efficient extraction method for quantitation of adenosine triphosphate in mammalian tissues and cells, Anal. Chim. Acta, 727, 8–12.

    Article  CAS  PubMed  Google Scholar 

  23. Kamidate, T., Yanashita, K., Tani, H., Ishida, A., and Notani, M. (2006) Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes, Anal. Chem., 78, 337–342.

    Article  CAS  PubMed  Google Scholar 

  24. Ishida, A., Yoshikawa, T., Nakazawa, T., and Kamidate, T. (2002) Enhanced firefly bioluminescence assay of ATP in the presence of ATP extractants by using diethyl-aminoethyl-dextran, Anal. Biochem., 305, 236–241.

    Article  CAS  PubMed  Google Scholar 

  25. Shama, G., and Malik, D. J. (2013) The uses and abuses of rapid bioluminescence-based ATP assays, Int. J. Hyg. Environ. Health, 216, 115–125.

    Article  CAS  PubMed  Google Scholar 

  26. Venkateswaran, K., Hattori, N., La Duc, M. T., and Kern, R. (2003) ATP as a biomarker of viable microorganisms in clean-room facilities, J. Microbiol. Methods, 52, 367–377.

    Article  CAS  PubMed  Google Scholar 

  27. Hammes, F., Goldschmidt, F., Vital, M., Wang, Y., and Egli, T. (2010) Measurement and interpretation of microbial adenosine triphosphate (ATP) in aquatic environments, Water Res., 44, 3915–3923.

    Article  CAS  PubMed  Google Scholar 

  28. Buckstein, M. H., He, J., and Rubin, H. (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli, J. Bacteriol., 190, 718–726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yaginuma, H., Kawai, S. V., Tabata, K., Tomiyama, K., Kakizuka, A., Komatsuzaki, T., Noji, H., and Imamura, H. (2014) Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging, Sci. Rep., 4, 6522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hamilton, R. D., and Holm-Hansen, O. (1967) Adenosine triphosphate content of marine bacteria, Limnol. Oceanogr., 12, 319–324.

    Article  CAS  Google Scholar 

  31. Vogel, S. J., Tank, M., and Goodyear, N. (2014) Variation in detection limits between bacterial growth phases and precision of an ATP bioluminescence system, Lett. Appl. Microbiol., 58, 370–375.

    Article  CAS  PubMed  Google Scholar 

  32. Paciello, L., Falco, F. C., Landi, C., and Parascandola, P. (2013) Strengths and weaknesses in the determination of Saccharomyces cerevisiae cell viability by ATP-based bioluminescence assay, Enzyme Microb. Technol., 52, 157–162.

    Article  CAS  PubMed  Google Scholar 

  33. Hong, Y., and Brown, D. G. (2009) Variation in bacterial ATP level and proton motive force due to adhesion to a solid surface, Appl. Environ. Microbiol., 75, 2346–2353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ivanova, E. P., Alexeeva, Y. V., Pham, D. K., Wright, J. P., and Nicolau, D. V. (2006) ATP level variations in heterotrophic bacteria during attachment on hydrophilic and hydrophobic surfaces, Int. Microbiol., 9, 37–46.

    CAS  PubMed  Google Scholar 

  35. Jamwal, S., Midha, M. K., Verma, H. N., Basu, A., Rao, K. V., and Manivel, V. (2013) Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis, Sci. Rep., 3, 1328.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Finger, S., Wiegand, C., Buschmann, H.-J., and Hipler, U.-C. (2013) Antibacterial properties of cyclodextrin-anti-septics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay, Int. J. Pharm., 452, 188–193.

    Article  CAS  PubMed  Google Scholar 

  37. Aragones, L., Escude, C., Visa, P., Salvi, L., and Moce-Llivina, L. (2012) New insights for rapid evaluation of bactericidal activity: a semi-automated bioluminescent ATP assay, J. Appl. Microbiol., 113, 114–125.

    Article  CAS  PubMed  Google Scholar 

  38. Paloque, L., Vidal, N., Casanova, M., Dumetre, A., Verhaeghe, P., Parzy, D., and Azas, N. (2013) A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania, J. Microbiol. Methods, 95, 320–323.

    Article  CAS  PubMed  Google Scholar 

  39. Shridhar, S., Hassan, K., Sullivan, D. J., Vasta, G. R., and Fernandez Robledo, J. A. (2013) Quantitative assessment of the proliferation of the protozoan parasite Perkinsus marinus using a bioluminescence assay for ATP content, Int. J. Parasitol. Drugs Resist., 3, 85–92.

    Article  Google Scholar 

  40. Gallez, F., Fadel, M., Scruel, O., Cantraine, F., and Courtois, P. (2000) Salivary biomass assessed by bioluminescence ATP assay related to (bacterial and somatic) cell counts, Cell Biochem. Funct., 18, 103–108.

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez, M. C., Llama-Palacios, A., Marin, M. J., Figuero, E., Leon, R., Blanc, V., Herrera, D., and Sanz, M. (2013) Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model, Med. Oral Patol. Oral Cir. Bucal., 18, e86–92.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Froundjian, V. G., Romanova, N. A., Dement’yeva, E. I., Brovko, L. Yu., Ugarova, N. N., Novikov, K. N., Brusovanik, V. I., Kobyalko, V. O., and Meshkov, N. A. (1997) ATP content in neutrophils and whole blood of people of Altai region exposed to nuclear test radiation, Radiats. Biol. Radioekol., 37, 13–19.

    Google Scholar 

  43. Chollet, R., Kukuczka, M., Halter, N., Romieux, M., Marc, F., Meder, H., Beguin, V., and Ribault, S. (2008) Rapid detection and enumeration of contaminants by ATP bioluminescence using the Milliflex® rapid microbiology detection and enumeration system, J. Rapid Methods Automat. Microbiol., 16, 256–272.

    Article  CAS  Google Scholar 

  44. Dewi Puspita, I., Kamagata, Y., Tanaka, M., Asano, K., and Nakatsu, C. H. (2012) Are uncultivated bacteria really uncultivable? Microbes Environ., 27, 356–366.

    Article  Google Scholar 

  45. Lomakina, G. Y., and Ugarova, N. N. (2010) Monitoring of the microbial contamination of air by bioluminescent ATP-assay, Luminescence, 25, 192–193.

    Google Scholar 

  46. Park, C. W., Park, J.-W., Lee, S. H., and Hwang, J. (2014) Real-time monitoring of bioaerosols via cell lysis by air ion and ATP bioluminescence detection, Biosens. Bioelectron., 52, 379–383.

    Article  CAS  PubMed  Google Scholar 

  47. Haghighi, F., Mohammadi, S. R., Mohammadi, P., Eskandari, M., and Hosseinkhani, S. (2012) The evaluation of Candida albicans biofilms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay, Bratisl. Lek. Listy, 113, 707–711.

    CAS  PubMed  Google Scholar 

  48. Kajiyama, S., Tsurumoto, T., Osaki, M., Yanagihara, K., and Shindo, H. (2009) Quantitative analysis of Staphylococcus epidermidis biofilm on the surface of biomaterial, J. Orthop. Sci., 14, 769–775.

    Article  PubMed  Google Scholar 

  49. Oulahal-Lagsir, N., Martial-Gros, A., Bonneau, M., and Blum, L. J. (2000) Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment — validation and application to a dairy factory, J. Appl. Microbiol., 89, 433–441.

    Article  CAS  PubMed  Google Scholar 

  50. Sule, P., Wadhawan, T., Carr, N. J., Horne, S. M., Wolfe, A. J., and Pruß, B. M. (2009) A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants, Lett. Appl. Microbiol., 49, 299–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Romanova, N. A., Froundjian, V. G., and Ugarova, N. N. (1994) in Bioluminescence and Chemiluminescence. Fundamental and Applied Aspects. Proc. 8th Int. Symp. (Campbell, A. K., Kricka, L. J., and Stanley, P. E., eds.) John Wiley & Sons, Chichester, pp. 434–437.

  52. Hunter, D. M., Leskinen, S. D., Magana, S., Schlemmer, S. M., and Lim, D. V. (2011) Dead-end ultrafiltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli O157:H7 in recreational water and produce wash, J. Microbiol. Methods, 87, 338–342.

    Article  PubMed  Google Scholar 

  53. Minikh, O. A., Brovko, L. Yu., Griffiths, M. W., and Ugarova, N. N. (2010) Specific determination of E. coli B using bacteriophage T4, nanofilters, and ATP assay, Moscow Univ. Chem. Bull., 65, 202–205.

    Article  Google Scholar 

  54. Romanova, N. A., Brovko, L. Yu., Moore, L., Pometun, E. V., Savitsky, A. P., and Ugarova, N. N. (2003) Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP bioluminescence, Appl. Environ. Microbiol., 69, 6393–6398.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Romanova, N. A., Pometun, E. V., Savitski, A. P., and Ugarova, N. N. (2000) Bioluminescent determination of adenosine-5′-triphosphate effuent from yeast cells because of their photodynamic injuries, Vestnik Mosk. Univ., Khimiya, 41, 404–407.

    CAS  Google Scholar 

  56. Costa, P. D., Andrade, N. J., Brandao, S. C. C., Passos, F. J. V., and de Soares, N. F. F. (2006) ATP-bioluminescence assay as an alternative for hygiene-monitoring procedures of stainless steel milk contact surfaces, Brazil. J. Microbiol., 37, 345–349.

    Article  CAS  Google Scholar 

  57. Larson, E., Aiello, A., Gomez-Duarte, C., Lin, S., Lee, L., Della-Latta, P., and Lindhardt, C. (2003) Bioluminescence ATP monitoring as a surrogate marker for microbial load on hands and surfaces in the home, Food Microbiol., 20, 735–739.

    Article  CAS  Google Scholar 

  58. Aycicek, H., Oguz, U., and Karci, K. (2006) Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen, Int. J. Hyg. Environ. Health, 209, 203–206.

    Article  CAS  PubMed  Google Scholar 

  59. Griffith, C. J., Cooper, R. A., Gilmore, J., Davies, C., and Lewis, M. (2000) An evaluation of hospital cleaning regimes and standards, J. Hosp. Infect., 45, 19–28.

    Article  CAS  PubMed  Google Scholar 

  60. Obee, P. C., Griffith, C. J., Cooper, R. A., Cooke, R. P., Bennion, N. E., and Lewis, M. (2005) Real-time monitoring in managing the decontamination of flexible gastrointestinal endoscopes, Am. J. Infect. Control, 33, 202–206.

    Article  PubMed  Google Scholar 

  61. Mempin, R., Tran, H., Chen, C., Gong, H., Kim Ho, K., and Lu, S. (2013) Release of extracellular ATP by bacteria during growth, BMC Microbiol., 13, 301.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Valat, C., Champiat, D., N’Guyen, T. T., Loiseau, G., Raimbault, M., and Montet, D. (2003) Use of ATP bioluminescence to determine the bacterial sensitivity threshold to a bacteriocin, Luminescence, 18, 254–258.

    Article  CAS  PubMed  Google Scholar 

  63. Trudil, D. P., Tartal, J., and Trudil, C. (2002) in Bioluminescence and Chemiluminescence: Progress and Current Applications (Stanley, P. E., and Kricka, L. J., eds.) World Scientific Publishing Co., Singapore, pp. 369–372.

  64. Thore, A., Ansehn, S., Lundin, A., and Bergman, S. (1975) Detection of bacteria by luciferase assay of adenosine triphosphate, J. Clin. Microbiol., 1, 1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Frundzhyan, V., and Ugarova, N. (2007) Bioluminescent assay of total bacterial contamination of drinking water, Luminescence, 22, 241–244.

    Article  CAS  PubMed  Google Scholar 

  66. Froundjian, V. G., Ugarova, N. N., and Trudil, D. P. (2002) in Bioluminescence and Chemiluminescence. Progress and Current Applications Campbell, A. K., Kricka, L. J., and Stanley, P. E., eds.) John Wiley and Sons, Chichester, pp. 475–478.

  67. Frundzhyan, V. G., Ugarova, N. N., Gabriyelyan, N. I., Aref’eva, L. I., and Preobrazhenskaya, T. B. (2005) in 13th Int. Symp. Biolumin. Chemilumin. Prog. Perspect. (Kricka, L. J., and Stanley, P. E., eds.) John Wiley and Sons, Chichester, pp. 389–392.

  68. Shinozaki, Y., Sato, J., Igarashi, T., Suzuki, S., Nishimoto, K., and Harada, Y. (2013) Evaluation of an improved bioluminescence assay for the detection of bacteria in soy milk, Biocontr. Sci., 18, 1–7.

    Article  CAS  Google Scholar 

  69. Frundzhyan, V. G., and Ugarova, N. N (2005) Rapid method for determining the number of mesophilic aerobic and facultative anaerobic microorganisms in raw milk, Pererabotka Moloka, No. 3, 14–15.

    Google Scholar 

  70. Ratphitagsanti, W., Park, E., Lee, C. S., Amos Wu, R.-Y., and Lee, J. (2012) High-throughput detection of spore contamination in food packages and food powders using tiered approach of ATP bioluminescence and real-time PCR, LWT–Food Sci. Technol., 46, 341–348.

    CAS  Google Scholar 

  71. Satoh, T., Kato, J., Takiguchi, N., Ohtake, H., and Kuroda, A. (2004) ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell, Biosci. Biotechnol. Biochem., 68, 1216–1220.

    Article  CAS  PubMed  Google Scholar 

  72. Morgan, C. A., Herman, N., White, P. A., and Vesey, G. (2006) Preservation of microorganisms by drying; a review, J. Microbiol. Methods, 66, 183–193.

    Article  CAS  PubMed  Google Scholar 

  73. Kolibab, K., Derrick, S. C., Jacobs, W. R., and Morris, S. L. (2012) Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations, J. Microbiol. Methods, 90, 245–249.

    Article  CAS  PubMed  Google Scholar 

  74. Jensen, S. E., Hubrechts, P., Klein, B. M., and Haslov, K. R. (2008) Development and validation of an ATP method for rapid estimation of viable units in lyophilised BCG Danish 1331 vaccine, Biologicals, 36, 308–314.

    Article  CAS  PubMed  Google Scholar 

  75. Crispen, R. G. (1971) Rapid testing of freeze dried BCG vaccine for stability and viability, Symp. Ser. Immunobiol. Stand., 17, 205–210.

    CAS  Google Scholar 

  76. Beckers, B., Lang, H. R., Schimke, D., and Lammers, A. (1985) Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria, Eur. J. Clin. Microbiol., 4, 556–561.

    Article  CAS  PubMed  Google Scholar 

  77. Janaszek, W., Aleksandrowicz, J., and Sitkiewicz, D. (1987) The use of the firefly bioluminescent reaction for the rapid detection and counting of mycobacterium BCG, J. Biol. Stand., 15, 11–16.

    Article  CAS  PubMed  Google Scholar 

  78. Hoffner, S. E., Jimenez-Misas, C. A., and Lundin, A. (1994) Improved extraction of mycobacterial ATP, in Bioluminescence and Chemiluminescence. Fundamental and Applied Aspects (Campbell, A. K., Kricka, L. J., and Stanley, P. E., eds.) John Wiley and Sons, Chichester, pp. 442–445.

  79. Hoffner, S., Jimenez-Misas, C., and Lundin, A. (1987) Improved extraction and assay of mycobacterial ATP for rapid drug susceptibility testing, Luminescence, 14, 255–261.

    Article  Google Scholar 

  80. Jensen, S. E., Hubrechts, P., Klein, B. M., and Haslow, K. R. (2008) Development and validation of an ATP method for rapid estimation of viable units in lyophilized BCG Danish 1331 vaccine, Biologicals, 36, 308–314.

    Article  CAS  PubMed  Google Scholar 

  81. Deinse, F. V., and Senechal, F. (1950) BCG on Sauton medium. Effect of a long series of subcultures on the morphological and biological properties of BCG cultures, Bull. World Health Org., 2, 347–354.

    PubMed Central  Google Scholar 

  82. Kolibab, K., Derrick, S. C., Jacobs, W. R., and Morris, S. L. (2012) Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations, J. Microbiol. Meth., 90, 245–249.

    Article  CAS  Google Scholar 

  83. Kettlun, A. M., Uribe, L., Calvo, V., Silva, S., Rivera, J., Mancilla, M., Valenzuela, M. A., and Traverso-Cori, A. (1982) Properties of two apyrases from Solanum tuberosum, Phytochemistry, 21, 551–558.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ugarova.

Additional information

Original Russian Text © G. Yu. Lomakina, Yu. A. Modestova, N. N. Ugarova, 2015, published in Biokhimiya, 2015, Vol. 80, No. 6, pp. 829–844.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakina, G.Y., Modestova, Y.A. & Ugarova, N.N. Bioluminescence assay for cell viability. Biochemistry Moscow 80, 701–713 (2015). https://doi.org/10.1134/S0006297915060061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060061

Key words

Navigation